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Preface  
  
This book collects the abstracts and short papers presented at CLADAG 2023, the 
14th Scientific Meeting of the Classification and Data Analysis Group (CLADAG) of the 
Italian Statistical Society (SIS). The meeting has been organized by the Department of 
Economics and Statistics of the University of Salerno, under the auspices of the Uni-
versity of Salerno, the SIS and the International Federation of Classification Societies 
(IFCS).   
 
CLADAG is a member of the IFCS, a federation of national, regional, and linguistically-
based classification societies. It is a non-profit, non-political scientific organization, 
whose aims are to further classification research.  Every two years, CLADAG organizes 
a scientific meeting, devoted to the presentation of theoretical and applied papers on 
classification and related methods of data analysis in the broad sense. This includes 
advanced methodological research in multivariate statistics, mathematical and statis-
tical investigations, survey papers on the state of the art, real case studies, papers on 
numerical and algorithmic aspects, applications in special fields of interest, and the 
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DISCRETE LATENT VARIABLE MODELS: RECENT
ADVANCES AND PERSPECTIVES

Francesco Bartolucci1, Michael Greenacre2,
Silvia Pandolfi1 and Fulvia Pennoni3
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ABSTRACT: After a review of the class of discrete latent variable models in terms of
formulation and estimation methods, recent advances and perspectives regarding these
models are illustrated. We consider in detail the stochastic block model for social net-
works and models for spatio-temporal data. Among these developments, we discuss,
in particular, the analysis of longitudinal compositional data about expenditures of the
Spanish regions over several decades.

KEYWORDS: Compositional data, data augmentation, expectation-maximization al-
gorithm, spatio-temporal modeling, variational inference.

1 Introduction

In general terms, latent variable models include variables not directly observ-
able to describe the relation between observable variables. Among these mod-
els, those based on the assumption that the latent variables follow a discrete
distribution, namely discrete latent variable (DLV) models, are nowadays com-
monly used (for a recent review, see Bartolucci et al., 2022). With respect to
models based on continuous latent variables, DLV models present some ad-
vantages, such as the flexibility and capability of clustering units in different
latent groups, also named components, classes, or states. Obviously, there are
also issues that may complicate the use of DLV models such as the selection of
the number of support points of the discrete distribution of the latent variables
and the multimodality of the likelihood function.

The first aim of this work is to provide a critical review of DLV models
in terms of formulation and estimation methods. Regarding the first aspect,
we describe recent proposals that can be used to deal with complex data struc-
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tures such as social networks and spatio-temporal data. In particular, for the
analysis of social networks we consider the stochastic block model and its ex-
tended versions that may be used in a longitudinal context where individuals
are repeatedly observed in terms of social behavior. For the analysis of spatio-
temporal data, we illustrate models based on latent variables which are specific
to each site and time of observation. We also consider recent formulations
which may be used to make causal inference on a certain policy or treatment
and that conceive potential versions of the latent variables to properly define
causal effects (Lanza et al., 2013).

Regarding estimation, we show that both frequentist and Bayesian infer-
ential approaches rely either on methods that directly assign the units to the
different components or methods in which this explicit assignment is avoided.
Among the methods of the first type, it is worth recalling those based on the
maximization, with respect to the model parameters and the assignment of
units to the components, of the so-called classification likelihood and the cor-
responding Bayesian methods based on Markov chain Monte Carlo (MCMC)
algorithms (Gelman et al., 2011) with data augmentation, where the latent vari-
ables are considered on the same footing as the model parameters. Estimation
methods of the second type are instead based on popular algorithms such as
the expectation-maximization (EM Dempster et al., 1977) applied to find the
maximum likelihood estimate of the parameters and corresponding MCMC al-
gorithms for Bayesian inference. We also describe variational methods (see,
among others, Daudin et al., 2008), used for complex contexts, and in general
we pay attention to the problem of scalability (Bartolucci et al., 2018).

The second aim of the present work is to illustrate a new possible applica-
tion of the DLV models to the analysis of temporal and spatio-temporal com-
positional data, as is briefly described in the following section.

2 Analysis of spatio-temporal compositional data

This development is motivated by the availability of a recent dataset about
the composition of the annual investments in different sectors of the Spanish
economy, for a long period that goes from 1964 to 2020 (Garcı́a et al., 2023).
In the present work we concentrate mainly on the simpler problem of the na-
tional data on the temporal scale, mentioning later how to broaden this to the
more detailed spatio-temporal scale across the different autonomous regions of
Spain. The data are thus collected in the m×1 vectors yt , t = 1, . . . ,T , where
T is the number of time occasions and m the number of sectors. For the spatio-
temporal framework, the data would be in vectors yit , i = 1, . . . ,n, t = 1, . . . ,T ,
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where n is the number of regions. The changing total amount invested across
the years is, of course, important to analyze, but here it is the changing compo-
sition of the investments that is of interest, namely the amounts invested each
year relative to their respective totals. Hence, compositional data are such that
the sum of the elements of each compositional response vector is fixed at 1
or 100% (see Greenacre, 2021, for a recent review). This has crucial impli-
cations in terms of data analysis. Two approaches are presented here: first,
an exploratory approach where the logratio transformation is used (Greenacre,
2018); and second, where the data are assumed to follow the Dirichlet distribu-
tion on the unit interval. For the logratio approach the simplest transformation
is the so-called additive logratio transformation, where all compositional parts
are expressed as a ratio with a fixed part, and then log-transformed. These
transformed data can then be analyzed using existing approaches for multi-
variate interval-scale data, assuming multivariate normal distribution.

For the regional data at hand we formulate different models. The starting
one is of hidden Markov type and does not account for the spatial dependence
between the regions. It only accounts for temporal dependence. For every re-
gion, this model assumes that each time-specific vector of response variables
yit , corresponding to parts of the composition, follows a Dirichlet distribution
with parameters that depend on an underlying discrete latent variable. In sym-
bols, we have

Yit |Uit = u ∼ Dir(αααu),

where Uit is the underlying latent variable having support {1, . . . ,k} and αααu is
the state-specific vector of parameters.

Moreover, each sequence of latent variables Ui1, . . . ,UiT follows a Markov
chain with initial probabilities and transition probabilities that, without co-
variates, are denoted by λu = p(Ui1 = u) and πu|ū = p(Uit = u|Ui,t−1 = ū),
t = 2, . . . ,T . With unit-specific covariates, these probabilities are formulated
by suitable logit parametrizations based on regression coefficients to account
for the effect of such covariates. This formulation is based on the usual as-
sumption that the response variables are conditionally independent given the
latent variables. Regarding the parametrization of the Dirichlet distribution,
we follow an approach that separates the effects of the latent states on the ex-
pected value and on the variance (see also Maier, 2014).

We also consider a spatio-temporal model where, following recent ap-
proaches (e.g., Bartolucci & Farcomeni, 2022), the latent state of a region in a
certain year may depend, not only on the previous state, but also on the state of
the neighbor regions. More precisely, each latent variable Uit is modeled con-
ditionally on Ui,t−1 and Ujt , j ∈ Ni, where Ni is the set of neighbors of region
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i. Even in this case, multinomial logit parametrizations are adopted to include
the effect of possible covariates. Again, we rely on the assumption of con-
ditional independence between the response vectors given the latent variables
that has an interesting interpretation and simplifies the estimation process.
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ABSTRACT: The randomized group lasso method performs a selection of groups of
variables in a model and returns estimates of the coefficients in the selected model.
The lasso estimator is a special case when all groups have size one. Typically, one
is interested in inference for only those model coefficients that appear in the selected
model and non-selected coefficients are further ignored. In selective inference one
obtains valid confidence intervals and P-values for the model coefficients after se-
lection, when conditioning on the event of the selection. We consider this problem
in the framework of a general class of loss functions and distributions, including the
generalized linear models, but also quasi-likelihood models that can deal with overdis-
persed data, for example. Our method allows the models to contain both categorical or
grouped covariates as well as continuous covariates. We use an additional randomiza-
tion during the group lasso estimation stage, which allows us to define a post-selection
likelihood. We show that this likelihood function can be used for selective inference
when conditioning on the event of the selection. An additional bonus is the selective
point estimator obtained from this likelihood, which accounts by construction for the
selection of the variables by the group lasso method. The confidence intervals for
the regression coefficients in the selected model can be constructed in the familiar
Wald-type way and we show that they have bounded lengths. We illustrate the selec-
tive inference method for grouped lasso on data from the national health and nutrition
examination survey.

KEYWORDS: group lasso estimation, likelihood estimation, post-selection inference,
selective inference
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TO GET THE BEST, TAME THE BEAST:
ROBUST ML ESTIMATION FOR MIXTURE MODELS

Francesca Greselin 1
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ABSTRACT: This paper presents a brief review of constrained maximization of the
likelihood, in combination with data-driven trimming, as a powerful technique for
achieving robust classification and clustering in mixture models. Trimming is the
simpler way to achieve robustness, being also highly intuitive. Originally developed
for Gaussian components, this methodology has been successfully extended to various
scenarios, including parsimonious mixtures, mixtures of factor analyzers, mixtures of
regression and cluster-weighted mixtures, as well as to mixtures of skew and func-
tional data. By effectively taming the complexities associated with parameter estima-
tion, this approach yields an estimator which exists and is strongly consistent to the
corresponding solution of the population optimum under widely general conditions.

KEYWORDS: Model-based classification, robustness, trimming, constrained estima-
tion, outliers.

1 Introduction

Mixture models offer a highly flexible approach for statistical modeling of di-
verse random phenomena, especially when we posit that the observations arise
from unobserved groups within the population. However, estimating Gaussian
(and related) mixture models using the Maximum Likelihood (ML) approach
introduces two significant challenges: i) the unboundedness of the likelihood
function, that sets the ML as a mathematically ill-posed problem, and ii) the
presence of contaminating data (background noise, pointwise contamination,
unexpected minority patterns, etc.) that could severely affect the model fitting.

To tame the likelihood, researchers have adopted two essential techniques
for parameter estimation in mixture models: eigenvalue constraints and trim-
ming. The foundation of this methodology can be traced back to Garcı́a-
Escudero et al., 2008, which has since evolved into a paradigm for robust
model-based classification and clustering. The approach is well-regarded for
its desirable theoretical properties and the availability of feasibile EM algo-
rithms for its implementation. Constrained estimation prevents convergence
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towards degenerate solutions, and mitigates the occurrence of non-interesting
(spurious) local maximizers associated with complex likelihood surfaces. From
Hathaway’s seminal paper (Hathaway, 1985), these approaches, when cou-
pled with impartial trimming, find applications in the context of robust statis-
tical methods. Impartial trimming consists in excluding a small percentage of
the less plausible observations, during the EM iterations, from contributing to
model estimation. So doing, it protects the inferential results from the harmful
effects of outliers.

Within the realm of this research stream, notable contributions include ro-
bust mixtures of factor analyzers (Garcı́a-Escudero et al., 2017) and the robust
cluster-weighted model (Garcı́a-Escudero et al., 2016b). The introduction of
their fuzzy versions (Garcı́a-Escudero et al., 2018b) revealed an intriguing in-
terplay between the fuzzifier parameter and the scale. Additionally, advance-
ments have been made in the treatment of skew components (Garcı́a-Escudero
et al., 2016a). In the context of the semisupervised setting, when label noise
interferes with the learning process, and whenever variable selection could be
beneficial, the development of a specific robust approach is needed (Cappozzo
et al., 2020b, Cappozzo et al., 2021).

However, in all such models, hyperparameter tuning remains an essential
part of the inferential process, and ongoing research is focused on determin-
ing optimal settings for critical parameters such as the percentage of trimming,
the number of components in the mixture, and the value for the eigenvalue
constraint (Riani et al., 2019). To support practitioners in this delicate task, re-
searchers have proposed graphical and computational tools based on the com-
bination of two exploratory steps (Cappozzo et al., 2023).

Indeed, the literature presents several alternative methodologies for achiev-
ing robust model-based classification. Some of these approaches involve sub-
stituting Gaussian components with other elliptical distributions that possess
heavier tails, such as the Student t (e.g., Greselin & Ingrassia, 2010) or the
contaminated normal distribution (Punzo & McNicholas, 2016). These ap-
proaches withstand the presence of mild outliers. One key concept used to
assess the robustness of an estimate in the presence of outliers is the break-
down point (Hampel, 1971). Its finite sample version is the maximum frac-
tion of outliers which a given sample may contain without spoiling the esti-
mate completely (Donoho, 1982). Among the models with good breakdown
properties, we may mention a method for cluster detection and clustering with
random start forward searches (Atkinson et al., 2018), the optimally tuned
robust improper maximum likelihood estimator, which uses an improper con-
stant density for modeling outliers and noise (Coretto & Hennig, 2017), and
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the weighted likelihood approach, aimed at downweighting outliers (Greco &
Agostinelli, 2020). Here the weights are based on Pearson residuals stemming
from robust Mahalanobis-type distances.

To conclude, the reviewed models deliver more reliable and stable estima-
tion in the presence of outliers and noisy data, significantly enhancing model
performance and facilitating more accurate statistical inference. The field of
robust model-based clustering and classification is continually progressing,
built upon solid results and theoretical foundations, while still presenting nu-
merous intriguing challenges that await exploration. Exciting possibilities lie
ahead, and the best is yet to come for researchers in this evolving domain.
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GARCÍA-ESCUDERO, L.A., GORDALIZA, A., GRESELIN, F., INGRASSIA,
S., & MAYO-ISCAR, A. 2018a. Eigenvalues and constraints in mixture
modeling: geometric and computational issues. Advances in Data Analy-
sis and Classification, 12(2), 203–233.
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RAGE AGAINST THE MEAN - AN INTRODUCTION TO
DISTRIBUTIONAL REGRESSION

Thomas Kneib1
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ABSTRACT: Distributional regression models that overcome the traditional focus on
relating the conditional mean of the response to explanatory variables and instead
target either the complete conditional response distribution or more general features
thereof have seen increasing interest in the past decade. In this presentation, we will
focus on generalized additive models for location, scale and shape as a flexible and
versatile tool for distributional regression. We will introduce the underlying methodol-
ogy and illustrate its application in different case studies. Furthermore, we will briefly
review competing distributional regression approaches such as conditional transfor-
mation models or quantile and expectile regression.

KEYWORDS: conditional transformation models, generalized additive models for lo-
cation, scale and shape, quantile regression, semiparametric regression.
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ON GRAPH LIMITS AS MODELS
FOR INTERACTION DATA

Sofia Charlotta Olhede1
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ABSTRACT: Network data has become a staple in many different applications, rang-
ing from ecology, to neuroscience and systems biology. Its inference will of course
depend on the application where we collect the network data, but I will discuss some
general principles based on probabilistic symmetries such as permutation invariance.
Just like other probabilistic invariances, the distributional invariance to permuting in-
dices of a matrix of interactions implies a representation theorem (the Aldous-Hoover
theorem). This representation is in terms of a graph limit function, or graphon. I
will discuss the representation, how to make inferences based on this representation,
what to do if distributional permutation invariance does not hold, and what to do if we
have additional information such as time stamp of interactions, multiple interactions
or additional covariate data.

KEYWORDS: network data, stochastic blockmodel, graph limit
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ENSEMBLE METHOD FOR TEXT CLASSIFICATION IN
MEDICINE WITH MULTIPLE RARE CLASSES
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ABSTRACT: The paper presents an ensemble method for text classification in the
presence of multiple rare classes in the context of medical record data. Specifically,
our study aims to classify clinical notes into multiple disease categories, including
rare diseases. The Ensemble method involves combining the predictions of multiple
machine learning models to predict the patient’s diagnosis more accurately. We used
three different machine learning algorithms, namely Support Vector Machine, Ran-
dom Forest, and Naive Bayes, to generate three distinct models and combine their
predictions through an ensemble method. The results demonstrate that the ensemble
method improves the classification performance compared to individual models. We
evaluated this approach on a dataset of 50,000 clinical notes with multiple rare classes.

KEYWORDS: text classification, ensemble method, machine learning, clinical cod-
ing.

1 Introduction

In the field of medicine, text classification is a crucial task for organizing and
managing large volumes of medical documents. Proper classification of medi-
cal texts can aid in decision-making processes, clinical research, and the devel-
opment of new treatments. Clinical coding is the task of transforming medical
information in a patient’s health records into structured codes, and machine
learning algorithms have been widely used to classify medical documents au-
tomatically. Nonetheless, the accuracy of machine learning methods can be
boosted by assembling various methods by combining their outputs. In this
paper, we explore ensemble methods for text classification in medicine, specif-
ically dealing with multiple rare classes.
In this paper, we propose using an ensemble method for Clinical coding, i.e.,
transforming medical records, usually presented as free texts written by clin-
icians, into structured codes in a classification system like the International
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Classification of Diseases (ICD-9) code, involving 18 different labels. Our ap-
proach involves fitting multiple machine learning algorithms and combining
their predictions to produce a final prediction. Specifically, we use Support
Vector Machine, Random Forest, and Naive Bayes and combine their predic-
tions with improving the accuracy of our classification results. Our study adds
to the expanding research on clinical natural language processing (NLP), fo-
cusing on the specific problem of text classification in the context of medical
records with multiple rare classes (imbalanced labels). The literature contains
important contributions, such as the work of Alsentzer et al. (2019), demon-
strating NLP applications in medical research and clinical practice, or the study
by Harrison & Sidey-Gibbons (2021) that highlights the potential of NLP mod-
els to improve medical NLP tasks. Finally, Wu et al. (2022) provides a compre-
hensive survey of clinical NLP research and applications, specifically focusing
on text classification.
The paper is organized as follows. In the next section, we present the experi-
mental setup we used in our study, including the dataset, the machine learning
algorithms, and experimental results. Finally, we conclude the paper and dis-
cuss future directions for research.

2 Experimental Setup

2.1 Data

In this study, we used the MIMIC-III (Medical Information Mart for Intensive
Care III) dataset, a publicly available dataset of de-identified electronic health
records of patients admitted to the intensive care unit (ICU) at Beth Israel Dea-
coness Medical Center between 2001 and 2012. The dataset includes clinical
notes such as discharge summaries, progress notes, and nursing notes. The
MIMIC-III dataset is widely used in the research community for various tasks,
such as predicting patient outcomes, identifying risk factors, and natural lan-
guage processing.
The clinical notes from patients with different diagnoses, including rare ones
(18 total different ones), were preprocessed to remove any personally identifi-
able information and to extract the relevant text for each diagnosis. Each note
was then labelled with its corresponding diagnosis obtaining 50,000 records.

2.2 Machine learning methods

Our study used three machine learning algorithms: i) Support Vector Machine
(SVM), a supervised learning algorithm that looks for the optimal hyperplane
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that separates the data into different classes. In our study, we used the linear
kernel function to train the SVM model; ii) Random Forest (RF), an ensemble
learning algorithm that combines multiple decision trees to improve the accu-
racy of predictions. RF works by randomly selecting a subset of variables and
a subset of data samples to build multiple decision trees. In our study, we used
100 decision trees to build the RF model; iii) Naive Bayes (NB), which is a
probabilistic machine learning algorithm that calculates the conditional prob-
ability of each variable given a class label and then uses Bayes’ theorem to
calculate the probability of each class given the variables. In our study, we
used the Multinomial Naive Bayes variant to build the NB model.
We then used the Ensemble method to combine the predictions of the three
machine learning models and produce a final prediction. Specifically, we used
the majority voting method to combine the SVM, RF, and NB model predic-
tions. The majority voting method works by selecting the class label predicted
by most of the three models. In other words, if two or more models predict
the same class label, that label is selected as the final prediction. If there is
no majority, the class label predicted by the model with the iteration-specific
highest accuracy is selected as the final prediction.

2.3 Results

The experiments’ results (Fig.1a) indicate that the ensemble method achieved
better results than individual models in predicting diseases from clinical notes.
The median accuracy of the ensemble method was 67.7%, which is higher
than the accuracy of individual models such as Naive Bayes (64.7%), SVM
(66.9%), and Random Forest (60%), indicating that the ensemble method is
more consistent in its predictions.
The results also show that the accuracy of the ensemble method was relatively
stable across all quantiles of the accuracy distribution. The ensemble method
was able to leverage the strengths of each model and compensate for its weak-
nesses.

3 Conclusion

In conclusion, our proposed ensemble method for text classification in medicine
with multiple rare classes shows promising results for identifying and predict-
ing various diseases from clinical notes. Our approach combines three machine
learning algorithms (SVM, RF, and NB) to improve the accuracy of individ-
ual models. The results demonstrate that the proposed ensemble method is a
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(a) Boxplot of accuracy scores.

Dev. Std. Median Mean

NB 0.017 0.647 0.647
SVM 0.020 0.668 0.669
RF 0.020 0.600 0.600
EM 0.019 0.676 0.677

(b) Summary of accuracy scores.

promising approach for clinical coding, also when dealing with multiple rare
classes or imbalanced datasets. Further research can explore the performance
of the proposed ensemble method on larger datasets with a broader range of
diseases, as well as the potential of incorporating other machine learning al-
gorithms and techniques such as deep learning and active learning. In addi-
tion, exploring ways to reduce the computational complexity of the ensemble
method without sacrificing performance is also an exciting avenue for future
research.
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ABSTRACT: This paper proposes a distance-based aggregation and consensus method
for preference-approvals, a type of preference data where individuals provide a list of
approved alternatives in addition to a strict ranking. The proposed method aims to
synthesize individual preference-approvals into a unified consensus representing the
group’s collective view. The consensus is the preference-approval, which minimizes
the average distance with the whole set of voters. The proposed method has potential
applications in group decision-making, recommendation systems, and social choice
theory.

KEYWORDS: preference-approvals, preference aggregation, group decision-making,
consensus

1 Introduction
In recent years, preference aggregation has received much attention due to
its various applications in group decision-making, recommendation systems,
and social choice theory. One type of preference data that has gained in-
creasing popularity is preference-approvals, where individuals provide a list
of approved alternatives in addition to a ranking (Brams & Sanver, 2009). In
this paper, we propose a distance-based aggregation and consensus method for
preference-approvals, which aims to synthesize individual preference-approval
into a unified consensus representing the group’s collective view. The proposed
method finds the consensus as the preference-approval that minimizes the av-
erage distance with the whole set of voters. We employ a family of distances
to evaluate the disagreement between preference-approvals and then use this to
formulate an optimization problem to find the consensus preference-approval.
This paper presents the notation and framework necessary to understand the
proposed method describing the aggregation procedure. This method could
advance preference aggregation and aid in practical decision-making scenar-
ios.
2 Notation
Suppose a set of voters V = {v1, . . . ,vn}, with n ≥ 2, are asked to order m dif-
ferent alternatives. The ranking π is a mapping function from the set of alterna-
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tives X = {x1, . . . ,xm} to the set of ranks π = {Pπ(x1), . . . ,Pπ(xi), . . . ,Pπ(xm)},
where Pπ : X −→{ 1, . . . ,m} assigns the rank of each alternative.
In the framework of preference-approval modelling, each preference ranking,
π, is paired with an approval vector, A. For any given set X of alternatives, we
define approvals by partitioning X into the set of approved alternatives G and
the set of rejected alternatives U . We represent a voter’s preference-approval
profile by a top-down order of alternatives with a horizontal bar: alternatives
above the bar are approved, and those below are rejected.

x3
x2
x1
x4

The preference-approval above is codified as follows:

π1 = (2,3,1,4) A1 = (0,0,1,0).

To evaluate the disagreement between preference-approvals, Erdamar et al.
(2014) introduced a family of distances. Specifically, given a parameter λ ∈
[0,1], they define a distance for preference-approvals, denoted by dλ, as a map-
ping from pairs of preference-approval profiles to the interval [0,1].

dλ
(
(π1,A1),(π2,A2)

)
= λdK(π1,π2)+(1−λ)dH(A1,A2) (1)

where (π1,A1) and (π2,A2) are two preference-approval profiles for the
same set of alternatives X of size m, dK and dH are respectively the Kemeny
and Hamming distance. In a recent study, Albano et al. (2022) presented a
generalized version of dλ, denoted as Dr

λ. This extended distance measure
incorporates a power-weighted mean as an aggregation function and accounts
for discordance between pairs of items in the preference-approval profiles.

3 Aggregation procedure
Given a n× 2m matrix Π, whose l-th row represents the preference-approval
associated with the l-th judge, the consensus preference-approval (π̂, Â) is
found by minimizing the average distance function dλ for fixed λ:

(π̂, Â)λ = argmin
(π,A)∈Pm

n

∑
l=i

dλ((π(l),A(l)),(π,A)), (2)

where Pm is the universe of all preference-approvals with m objects.
By construction, the minimization of dλ entails the simultaneous minimization
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of both rank and approval distances. Therefore, the problem is reduced to
finding π̂ and Â such that:

(π̂ = argmin
π∈Sm

n

∑
l=i

dK(π(l), π), Â = argmin
A∈{0,1}m

n

∑
l=i

dH(A(l), A)). (3)

where Sm is the universe of the permutations (with ties) of m elements, and
dH(A(l), A) and dK(π(l), π) are respectively the Hamming and the Kemeny dis-
tance between the preference and the approval part of the l-th row and the
candidate consensus.
To find the Kemeny optimal ranking π̂, we rely on the work of D’Ambrosio
et al. (2015), who provided two accurate algorithms, called QUICK and FAST,
for identifying the median ranking following the Kemeny approach. To find the
approval consensus, Â, we compute the median approval vector by calculating
the element-wise median of the binary approval matrices for all judges. In
other words, we calculate the median of each column of the binary approval
matrix, resulting in a final approval vector representing the consensus among
the judges.

4 Case study
This section presents a case study, using data from the Eurobarometer*, web-
site to demonstrate the effectiveness of the proposed method. The data consists
of 27 rows (one per EU member country) and 9 columns representing alterna-
tives concerning social values such as x1: Equality between women and men,
x2: Fight against discrimination, x3: Tolerance and respect for diversity, x4:
Solidarity among EU States, x5: Solidarity between the EU and poor countries,
x6: Protection of human rights, x7: Freedom of religion, x8: Freedom of move-
ment, and x9: Freedom of speech. To obtain preference-approvals, alternatives
are ranked in order of popularity for each country, and those that received more
votes than the national average were considered acceptable. We used a hier-
archical clustering procedure based on dλ (with λ = 0.75) and found that the
EU countries can be separated into two large clusters. Cluster 1 mainly com-
prises Western European countries (Austria, Belgium, Denmark, France, Italy,
Luxembourg, Malta, Netherlands, Portugal, Spain, and Sweden). In contrast,
Cluster 2 is manly composed of Eastern European countries (Bulgaria, Croa-
tia, Cyprus, Czech Rep., Estonia, Finland, Germany, Greece, Hungary, Ire-
land, Latvia, Lithuania, Poland, Romania, Slovakia, and Slovenia). The con-
sensus procedure has been applied to aggregate preference-approvals within

*https://europa.eu/eurobarometer/surveys/detail/2612.



24

each cluster and facilitates the interpretation. The two consensus preference-
approvals are:

Cluster 1

x1 x9
x6

x4
x2
x3
x8
x5
x7

Cluster 2

x6
x9
x8
x4

x1 x3
x2
x5
x7

The two consensus clusters show different levels of agreement on certain al-
ternatives. For instance, Cluster 1 consensus shows a higher preference for
equality between women and men. In contrast, Cluster 2 consensus shows a
higher preference for the solidarity between EU Member States and freedom
of movement. Overall, the two consensus preference-approvals provide a more
detailed and nuanced picture of how the EU countries express their views on
the nine alternatives proposed.

5 Conclusions
In conclusion, this paper proposes a distance-based approach for aggregating
and reaching a consensus on preference-approvals, providing a solution for
extracting a common preference from a group with diverse preferences. The
approach offers a framework for achieving consensus among individuals with
diverse preferences and can help improve decision-making processes’ effec-
tiveness and efficiency. Moreover, this algorithm could be used within prefer-
ence learning algorithms to make predictions. In future work, we aim to extend
this approach to the generalized distance function presented by Albano et al.
(2022), thus providing an algorithmic solution to achieving consensus through
the extended preference-approval distance.
References
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Marco Alfó 1, Dimitris Pavlopoulos2 and Roberta Varriale1

1 Department of Statistical Science, Sapienza University of Rome, (e-mail:
marco.alfo@uniroma1.it, roberta.varriale@uniroma1.it)
2 Department of Sociology, Vrije Universiteit Amsterdam, (e-mail:
d.pavlopoulos@vu.nl)

ABSTRACT: Flexible employment is an important topic in scientific and political de-
bate in Europe. The present work describes the use of machine learning techniques to
predict the contract type, by using information coming from both survey and admin-
istrative data. Information on contract type come from linked data from the Labour
Force Survey and the Employment Register of the Netherlands for the period 2007-
2015.

KEYWORDS: flexible employment; machine learning; multi-source data

1 Introduction

Flexible employment is an important topic in scientific and political debate in
Europe. In Eurozone countries, OECD statistics (https://stats.oecd.org) show
that the incidence of temporary employment was 11.8 percent in 2021, while
the probability of getting a job on a temporary contract increased by 36 per-
cent between 2013 and 2019 (Latner, 2022). The Netherlands also saw a sharp
increase in the incidence of temporary employment in 2021: from 13.7 percent
in 2000 to 27.4 percent. In Italy, the increase was a bit lower, from 10.1 per-
cent in 2000 to 16.6 percent in 2021. The role of temporary contracts can be
assessed from a life course perspective: one of the main questions the research
seeks to answer is whether temporary work is always a stepping stone to per-
manent employment or it should be rather considered as a trap of precarious
jobs (Latner & Saks, 2022).

Data to study flexible employment dynamics may come from different
sources, such as survey, administrative and statistical register data. Measure-
ments from different sources may not agree for different reasons, including the
presence of measurement error or misalignment in the definitions or between
occasions of measurement. For example, there could be temporal misalign-
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ment of the sources, structural lack of administrative information on irregular
work, misalignment of employment definition in the available sources.

Findings on mobility from temporary to permanent employment can be
severely biased due to measurement error, usually present in the information
used for analysis, coming from both survey and statistical register data (see,
for example, Pavlopoulos & Vermunt, 2015; and Pankowska et al., 2021). A
possible approach to deal with measurement error when multiple data sources
are available is based on the use of latent variable models. In particular, latent
variable models can be used to predict the true target value (here, the current
type of contract) given the observed measurements in the data sources when
all these data sources contain information closely related to the target variable,
but none can be assumed to be error free (Filipponi et al., 2021). An alternative
approach to deal with data coming from multiple possibly discordant sources is
based on Machine Learning (ML) tools for supervised classification (Varriale
& Alfo’, 2023). ML tools may be used to predict the individual target variable,
and to extract important information from the data to learn more about the
phenomenon in the form of a selection of possibly important predictors of the
response.

The present work describes the use of some ML techniques, including de-
cision trees and random forests, to predict the individual contract type. We use
linked data drawn from the Labour Force Survey (LFS) and the Employment
Register of the Netherlands for the period 2007-2015. The aim of this paper
is to show how ML techniques can be used with longitudinal data to extract
important information for the purpose of estimating the probability of a tem-
porary employment contract in the life course, and to learn more about the
phenomenon.

2 The context

The data sources providing information on types of employment contracts are
the Labour Force Survey (LFS) administered by Statistics Netherlands and
the Employment Register of the Netherlands (ER). LFS represents the main
source of information on the labour market for official statistics. It produces
information on employment and the main aggregates of the job offer - pro-
fession, sector of economic activity, hours worked, type and duration of con-
tracts, training. LFS is harmonized at the European level as established by the
EU Regulation 2019/1700 of the European Parliament and the Council. In the
Netherlands, the LFS has a rotating trimonthly scheme and it is representative
for the Dutch population aged 15 or more. Since 1999, respondents are inter-
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viewed at 5 consecutive panel waves. The collected information refers to the
moment of the interview, and the interviews are carried out during every week
of the trimester. Table 1 show the LFS rotating scheme for two years.

Table 1. LFS rotating scheme for two years.

year1 year2
Sample q1 q2 q3 q4 q1 q2 q3 q4

1 x x x x x . . .
2 . x x x x x . .
3 . . x x x x x .
4 . . . x x x x x
5 . . . . x x x x
6 . . . . . x x x
7 . . . . . . x x
8 . . . . . . . x

The ER is a register administered by the Institute for Employee Insurance
(UWV), containing information on labour market and income for all insured
workers in the Netherlands. The ER is constructed by collecting and matching
information from various sources, i.e. the Tax Office, the Population Regis-
ter and information drawn from temporary work agencies’ registries (Bakker
et al., 2014). The submission of tax-reporting statements is compulsory for
employers. However, while ER dataset contains monthly information, em-
ployers typically submit the relevant information only few times per year. This
may, at least potentially, produce some errors, in particular for the informa-
tion regarding the period between two consecutive submissions. Additional
sources of measurement error in ER may result from administrative delays,
wrong registration, and erroneous administrative procedures.

3 A machine learning approach

A ML approach for supervised classification is applied to predict individual
contract type as a function of individual features and time. Categories of con-
tract type can be classified as ”permanent”/”non-permanent.” The latter cat-
egory can be divided into ”fixed-term”, ”temporary or on-call”, and ”other”.
The response is contract type, and models considering both response at 2 and
4 categories as target variable are considered and estimated.
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Let yi jt denotes the binary indicator for contract type j at occasion t for in-
dividual i (i = 1, . . . ,n, t=1,. . . ,T, j = 1, . . . ,m). In this work T = 32, each time
t corresponding to a specific quarter of the year. We use multiple strategies of
analysis. The first strategy involves using yi jt as the target variable and all the
information available in previous times as covariates. Therefore, we want to
model the conditional expectation E(yi jt |xit ,xit−1, . . . ,xi1). The second strat-
egy uses as covariate also the information on the target variable y at time t −1,
in order to take into account the longitudinal structure of the data by defining
a formal for the conditional expectation E(yi jt |yi jt−1,xit ,xit−1, . . . ,xi1). In par-
ticular, we are assuming that the evolution of the contract type is governed by
a first order Markov chain with transition matrix that do not depend on time.
Last, we will consider a first order non homogeneous Markov chain where
transition probabilities may depend on individual features and or time. ML
techniques are applied using the R software.

The aim is to show how ML can be used with longitudinal data, both for
prediction and to extract the relevant information.
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ABSTRACT: Hazard ratios are ubiquitously used in time to event applications to quan-
tify treatment effects. Although hazard ratios are invaluable for hypothesis testing,
other adjusted measures of association, both relative and absolute, may be used to
fully appreciate studies results, especially when the assumption of proportional haz-
ards does not hold. In the following we will show the use of restricted mean survival
time, a measure of association that received a lot of attention in the last years, esti-
mated through the follow-up time. Direct regression models on RMST and Machine
Learning approaches are available. Examples will be used to illustrate the different
approaches.

KEYWORDS: restricted mean survival time, machine learning, direct regression.

1 Introduction

Restricted mean survival time (RMST) differences between groups have been
advocated as useful measures of association in time to event studies. In fact,
while the ubiquitously used hazard ratios are invaluable for hypothesis testing,
measures of association based on RMST, both relative and absolute, may have
a more plain clinical interpretation and help to fully elucidate study results.

Many recent contributions focused on estimates of the difference in RMST
through follow-up times, instead of using a single time horizon. The resulting
curve can be used to quantify the association in time units. Moreover regres-
sion models have been developed to directly regress RMST on covariate pat-
terns. These methods are based either of IPCW or on pseudo-values (PV).
In particular, the method based on PV is easily implementable with available
software and makes possible to adopt Machine Learning methods, such as the
Deep Neural Network (DNN) proposed by Zhao, 2021.
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We investigated the ability of DNN to account for complex covariate pat-
terns, such as interactions, using literature data as done in Ambrogi et al.,
2022.

2 Methods

In survival analysis the time T elapsed from an initial event to the possible
occurrence of a terminating event is analysed. Generally, only a right-censored
version of the random variable T is observe. Therefore, instead of the mean
value of T the τ-restricted mean survival time (RMST) is used:

RMST (τ) =
∫ τ

0
S(t)dt (1)

where S(t) = P(T > t) = exp(−
∫ t

0 λ(u)du) is the survival function and λ(t)
is the hazard function. The RMST (τ) represents the expected lifetime over a
time horizon equal to τ. The RMST (τ) can be estimated non-parametrically
based on the Kaplan-Meier estimator or model-based.

Direct regression of RMST as a function of covariate values was studied
by Tian et al., 2014, based on inverse probability of censoring weighting, and
by Andersen et al., 2004 based on pseudo-values.

A joint model for several τ-values, τ1, . . . ,τ j, . . . ,τM, including an inter-
action term between the treatment and a function, f (·), of time, to model a
time-varying treatment effect is

g(RMST (τ|Z)) = h(τ)+βZ + γZ f (τ). (2)

Commonly used link functions are the log, the logit or the identity func-
tion. Estimation based on pseudo-values is discussed in Ambrogi et al., 2022,
while estimation based on IPCW is presented in Zhong & Schaubel, 2022.

Recently a deep neural network (DNN) model was presented for RMST
prediction by Zhao, 2021 called DnnRMST. The DNN is based on pseudo-
values estimated at multiple times during the follow-up and optimized using
MSE. The DNN consists of an input layer, some hidden layers and a multiple
output layer with M nodes, for the pseudo-values at the different times. The
DNN can be implemented using the Keras library in R (Allaire & Chollet,
2022). Hyper-parameters can be selected using a random grid search over
the number of nodes, dropout regularization, ridge regularization and learning
rate.
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3 Results

Data of a double blind randomised clinical trial studying the effect of pred-
nisone versus placebo on survival in patients with liver cirrhosis, already used
for RMST estimation in Andersen et al., 2004, were used to illustrate the meth-
ods. The CSL1 trial showed an interaction effect between treatment and pres-
ence of ascites, as illustrated in figure 1. Top panels show patients without
ascites, while bottom panels show patients with ascites. Left panels show the
KM survival curves for treated and control groups. The central figure panels
show the non parametric estimate of RMST for treated and control groups.
Right panels show the difference between RMST curves for treated vs control
groups estimated non-parametrically (solid line), with the direct model with
pseudo-values (dotted) and with DnnRMST (red). It is possible to see that,
even if the interaction is captured by the DNN, the estimates are not in lines
with those of the non-parametric estimators.
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Figure 1. Comparison of the nonparametric estimate of RMST with the one obtained
using direct regression models and DnnRMST.
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4 Discussion

RMST has received a lot of attention in recent years. A possibility introduced
for the first time by Royston & Parmar, 2011, is to estimate the difference of
RMST curve through the time, to appreciate how the treatment comparison is
evolving through time. Different regression methods have been proposed to
estimate RMST as a function of time and Machine Learning techniques are
also available. One interesting aspect is that of sample size. In fact, ML is in
principle able to learn directly from data at the cost of hyper-parameters opti-
mization. However, learning is data expensive and evaluating at which sample
size the ML models are able to correctly reproduce complex data pattern is an
open research question.
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ABSTRACT: In this talk, we introduce a novel data-based smoothing parameter tai-
lored for circular kernel density estimation and its derivatives. Building upon the
plug-in ideas, we replace unknown quantities with appropriate estimates to derive an
optimal smoothing parameter. Specifically, we present a circular adaptation of the
renowned Sheather and Jones bandwidths through direct and solve-the-equation plug-
in rules. The theoretical underpinning of our approach is established, encompassing
the asymptotic mean squared error of the density estimator, its derivatives, and its
functionals for circular data. We further conduct a simulation study to compare the
performance of our proposed selectors with existing data-based smoothing parame-
ters. To illustrate the applicability of our plug-in rules, we apply them to a real data
example.
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ABSTRACT: Microbiota plays a crucial role in human health. Recently, NGS tech-
nologies have enabled the exploration of the microbiome without isolation and cultur-
ing. However, analyzing and translating microbiome data into meaningful biological
insights is challenging due to the data’s compositional nature, high dimensionality,
sparseness, and over-dispersion. The gut microbiome can vary from individual to in-
dividual, and microbiome communities can be grouped to identify community types
linked to environmental or health conditions. Different data features, such as individ-
ual profiles, community-based descriptors, or genera interactions within a community,
provide different perspectives on microbiome complexity. Combining these perspec-
tives could lead to a more comprehensive understanding of microbiome data.

KEYWORDS: model-based clustering, community diversity measures, network-based
clustering, consensus clustering

1 Introduction

Microbiota is largely recognized as being a central player in the human health
and in that of all organisms and ecosystems, and subsequently has been the
subject of intense study. Recently, Next Generation Sequencing (NGS) tech-
nologies have enabled the exploration of microbiome without the need for
isolation and culturing. The data we are going to study have been obtained
through deep sequencing of 16SrRNA genes and grouping bacteria at a certain
level of 16SrRNA gene similarity. The analysis and the translation of micro-
biome data into meaningful biological insights remain still very challenging,
also due to particular data characteristics. Microbiome data, in fact, are taxa
counts that are compositional in nature (Gloor et al., 2017), high-dimensional,
sparse and over-dispersed. In humans, gut microbiome can vary from individ-
ual to individual and individual microbiome communities can be grouped to
identify community types whose variability can be differently linked to envi-
ronmental or health conditions.
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According to the literature on microbiome data (Xia et al., 2018), different
data features can provide different perspectives on microbiome complexity.

The focus has typically been placed either on individual profiles or on
community-based descriptors or on genera interactions within a community.
We argue that combining these different perspectives could provide a more
comprehensive understanding.

2 Microbiome data views

2.1 Individual profiles

The basic sampling units, over which conclusions are generalized, are biolog-
ical samples. It is of interest to highlight similarities and differences across
these units. The fundamental features with which to describe samples are the
counts of bacterial species. For interpretation, it is common to imagine proto-
typical units which can be used as a point of reference for observed samples.
In microbiome analysis, these are called communities: different communities
have different bacterial signatures.

It is worth noticing that this kind of data structure closely resembles the
term-document matrix, typically used in the analysis of textual data, and that
microbiome data share many of its pros and cons (Sankaran & Holmes, 2019).

2.2 Diversity measures

Characteristic of biological communities is the biodiversity, and it can be de-
scribed either focusing on within-individual richness of taxa or on inter- indi-
vidual variability. α-diversity is the diversity within a single sample and can
be measured via Shannon-Wiener diversity index H ′ or via Simpson diversity
index D:

H ′ =−
p

∑
i=1

pi log pi, D = 1−
p

∑
i=1

p2
i

where pi is the proportion of individuals (or relative abundance) of species i in
the community and p is the total number of species present.

β-diversity evaluates differences between two or more units or local as-
semblages, thus allowing to describe how many taxa are shared between com-
munities or individuals. Examples are the Bray-Curtis dissimilarity:

BC =
∑p

i=1 |Xi j −Xik|
∑p

i=1(Xi j +Xik)
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where Xi j, Xik are the number of individuals in species i in each sample ( j,k)
and p is the total number of species in samples, and the UniFrac distance. The
unweighted (dU ) and weighted (dW ) UniFrac distances exploit the phyloge-
netic tree information and can be found for two communities A and B as

dU =
T

∑
t=1

bt |I(pA
t > 0)− I(pB

t > 0)|
∑T

t=1 bt
, dW =

∑T
t=1 bt |pA

t − pB
t |

∑T
t=1 bt(pA

t + pB
t )

where pA
t and pB

t are the taxa proportions descending from the branch t for
community A and B, respectively, T is the rooted phylogenetic tree’s branches
and bt is the length of the branch t.

2.3 Network structures

The interactions among the constituent members of a microbial community
play a major role in determining the overall behavior of the community and
the abundance levels of its members (Xia et al., 2018). These interactions can
be modeled using a network whose nodes represent microbial taxa and edges
represent pairwise interactions. It is often unreasonable to expect that a single
network is able to account for all the interactions in a community and network
clustering can help in detecting microbiome features connected, for instance,
with different health and environment condition.

3 Microbiome multi-view clustering

Clustering individual profiles (view 1) can be performed via partitioning and
hierarchical methods (such as, e.g., spherical k-means, Partitioning Around
Medoids, Ward’s method) or via model-based methods such as mixtures of Von
Mises-Fisher distributions, Dirichlet Multinomial Mixtures, Latent Dirichlet
Allocation (see, for a review, Sankaran & Holmes, 2019).

In view of the analogy between microbiome and textual data, we propose
to use here the method proposed in Anderlucci et al., 2019, which models
the clustering structure through a cosine distance-based mixture. Specifically,
given the cosine dissimilarity d(x,ξ) of a generic sample/document x from a
centroid, say ξ, a distance-based density can be constructed as:

f (x;ξ,λ) = ψ(λ)e−λd(x,ξ)

where λ is a positive precision parameter and ψ(λ) is a normalization constant.
In order to perform clustering, we consider a mixture of K cosine distance-
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based density functions:

f (x;ξ,λ) =
K

∑
k=1

πkψ(λ)e−λd(x,ξk)

with positive mixture weights πk, summing to unity and component varying
centroid vectors ξk.

When the focus is on community diversity (view 2), the different diversity
measures can be combined in a Gower’s-coefficient-like fashion in order to
guide the clustering of the individuals.

Finally, when the aim is to capture the interaction structure between taxa
(view 3) network-based clustering via mixtures of Multivariate Poisson Log-
Normal distributions can be applied (Tavakoli & Yooseph, 2019).

The clustering results of the three data views will be combined via con-
sensus clustering (Hornik, 2005) or via the Bayesian two-way latent structure
model proposed in Swanson et al., 2019. The proposed multi-view clustering
method will be applied to real data on gut microbiome described in McDonald
et al., 2018.
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ABSTRACT: One of the most popular partitioning cluster algorithms for mixed-type
data is the k-prototypes algorithm. Due to its iterative structure, the algorithm may
only converge to a local optimum rather than a global one. Therefore, the resulting
cluster partition may suffer from the initialization. In general, there are two ways of
achieving an improvement of the initialization: One possibility is to determine con-
crete initial cluster prototypes, and the other strategy is to repeat the algorithm with
different randomly chosen initial objects. Different numbers of algorithm repetitions
are analyzed and evaluated comparatively. It is shown that an improvement of the clus-
ter algorithm’s target criterion can be achieved by an appropriate choice of repetitions,
even with manageable time expenditure.

KEYWORDS: k-prototypes, mixed-type data, cluster analysis, initialization.

1 Introduction to the Problem

In the origin initialization, points to be clustered are chosen randomly as ini-
tial cluster prototypes. Subsequent iterations lead to a local optimum of the
summed squared error minimization problem, but not necessarily to the global
minimum for k-prototypes (Huang, 1997). Therefore, the choice of proper
starting points is important. In general, there are three different strategies to
receive the initial prototypes: The starting points can be determined based
on the knowledge of the clustering use case. Otherwise, one can do a math-
ematical determination or a random-based choice of objects to be clustered.
The latter one is probably the most common way in practice, where k objects
are randomly selected. These may or may not be good starting points for the
iterative algorithm routine. To increase the probability of reaching a global
optimum, one can apply the algorithm multiple times on different, randomly
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compared and evaluated on ffferent data situations with regard to the adjusted
Rand index (short: ARI; Hubert & Arabie, 1985) and the computation time.

2 Simulation Study on the Random-based Initialization of the k-
Prototypes Algorithm

Execution of the Simulation Study The aim of this study is to determine an
appropriate number of repetitions to obtain a faactory cluster partition but
at the same time, the number of algorithm repetitions should be as low as pos-
sible because of the increasing computation time. In practice, the number of
repetitions can be passed to the R function kproto (Szepannek, 2018) via the
parameter nstart. After the algorithm’s application on nstart randomly
chosen prototypes sets, the partition which minimizes the target criterion is
used. The simulation study was executed on a Dell PowerEdge R440 server
with two Intel Xeon Silver 4216 processors (2 x 16 cores; 2.1 GHz) and 768
GB RAM.

In the simulation study were included 120 ffferent data situations, fffer-
ing by the variation of the number of observations (500, 1000, 2000), variables
(2, 4, 8) and clusters (2, 4, 8), whether the cluster group sizes were equal or
unequal, and the ratio of categorical to numerical variables (0.25, 0.5, 0.75).
Too mitigate the random influence of the generation process 50 data sets were
determined for every of the 120 data situations (see Aschenbruck et al., 2022).
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Determination of the Number of Repetitions Depending on the Data Sit-
uation The data situation based number of repetitions m assures that with a
probability of 0.9 at least one of the m sets of initial prototypes contains ob-
jects of every cluster group. Considering a geometrically distributed random
variable Z ∼ Geo(π), it follows that the number of repetitions depending on
the data situation at hand is

m = Fz
−1

z (0.9) with probability of sucess π⋆ =
k−1

∏
i=0

N − i · ⌈N
k ⌉

N − i
, (1)

where N is the number of objects to be clustered and k the number of clusters
to be determined. Thereby, all clusters are assumed to be of equal size since in
practice, the sizes of the clusters to be determined are unknown. Nevertheless,
if one suspects a small cluster group it is possible to input k in Eq. (1) as the
reciprocal of this size.
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Computation Time In Fig. 3 the avverage computation time for all data situ-
ations with the specified number of clusters and the average ARI is given. The
influence of the number of repetitions and clusters on the increase in compu-
tation time is obvious. The data-based number of algorithm repetitions mk,N
(m2,· = 4, m4,· = 24, m8,500 = 905, m8,1000 = 931, m8,2000 = 944) results in
overall good rated partitions while vvoiding unnecessary algorithm repetitions.

3 Summary

In this work, a theoretical determination of repetitions was motivated. For a
small number of clusters, a few repetitions are ffificient, whereas as that num-
ber increases, a strong increase in repetitions is necessary, even at 8 clusters.
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ABSTRACT: Dirichlet process mixtures, obtained by convolving the law of a Dirichlet
process with a suitable kernel, are popular methods for density estimation. Due to the
almost sure discreteness of the mixing measure, they automatically provide a latent
clustering which is often of great interest for applied researchers. However, despite
its relevance, little is known about the posterior properties of clustering, even with
a large sample. We contribute by considering a simple data generating mechanism
and showing the asymptotic properties of the maximum a posteriori clustering with
Gaussian kernel.

KEYWORDS: Bayesian nonparametrics; clustering; maximum a posteriori; asymp-
totic analysis.

1 Introduction

Bayesian nonparametric methodologies have witnessed a growing popularity
in the last decades, mainly due to the their flexibility: see Ghosal & Van Der
Vaart (2017) for a recent review. A popular model for density estimation is
given by Dirichlet process mixtures (Lo (1984)), which can be summarized as
follows

Yi | θi ∼ k(y | θi), θi | P i.i.d.∼ P, P ∼ DP(P0,α), (1)

where k(y | θ) is a density function with parameter θ and DP(P0,θ) is the law
of a Dirichlet process (DP, Ferguson (1973)) with baseline distribution P0 and
concentration parameter α > 0. It can be shown that the realizations of P
are almost surely discrete probability measures, so that the θi’s will present
ties with positive probability, leading to a latent clustering of the observed
datapoints Y1:n = (Y1, . . . ,Yn).

Models as in (1) are provided with good asymptotic properties in terms
of density estimation (Ghosal & Van der Vaart, 2007), when the data are gen-
erated i.i.d. from a “true” distribution P∗, but the clustering behavior a pos-
teriori is less understood. As a positive note, it has been shown that, under
suitable assumptions, the posterior on the mixing measure converges to the
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“true” one in Wasserstein distance (Nguyen, 2013), but the metric is too weak
to prove per se results on the clustering. More recently, Miller & Harrison
(2013, 2014) showed that the posterior distribution on the number of clusters
is often inconsistent, in the sense that it places positive mass to a larger number
of clusters, even asymptotically. However, such results are not as bad as they
sound: indeed, Ascolani et al. (2023) suggested that the issue is alleviated by
placing a suitable hyperprior on the concentration parameter α, while Wade
(2023) empirically showed that different estimators for the partition (obtained
by minimizing different loss functions) lead to considerably different estimates
for the number of clusters. Beyond this framework, Rajkowski (2019) proved
interesting geometric properties of the maximum a posteriori partition.

In this work we consider a Gaussian kernel for model (1) and a purposely
simple data generating mechanism, so that computation of posterior quanti-
ties becomes easier. We show that in this context the maximum a posteriori
clustering converges to the “natural” partition of the observations.

2 Dirichlet process mixtures with Gaussian kernel

As discussed in Section 1, by the discreteness of the DP the set (θ1, . . . ,θn),
corresponding to observations Y1:n, yields ties with positive probability. There-
fore model (1) induces a distribution over the space of partitions of [n] =
{1, . . . ,n}. If A = {A1, . . . ,As} ∈ τs(n), where τs(n) is the space of partitions
of [n] in s non-empty and disjoint subsets, it is possible to show (Miller &
Harrison, 2013; Ascolani et al. , 2023) that

P(A | Y1:n) ∝ αs
s

∏
j=1

Γ(a j)
s

∏
j=1

m
(
YA j

)
, (2)

where a j = |A j|, YA j = {Yi | i ∈ A j} and m
(
YA j

)
=

∫
∏i∈A j k (Yi | θ)P0(dθ) de-

notes the marginal distribution of cluster j. We call the maximum a posteriori
clustering, the partition A∗(Y1:n) which maximizes the above posterior distri-
bution, i.e. A∗(Y1:n) = argmaxAP(A | Y1:n). In this work we assume to observe
scalar data points and

k(y | θ) = N(θ,σ2) and P0(dθ) = N(µ0,σ2
0)dθ, (3)

where N(µ,τ2) denotes the density of a normal distribution with mean µ and
variance τ2, while (µ0,σ2

0,σ2) are fixed hyperparameters. With standard com-
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putations it is easy to obtain

m
(
YA j

)
=

√
σ2

σ2
0a j +σ2 (2πσ2)−a j e

σ2
0a j+σ2

2σ2σ2
0

(
σ2

0a j
σ2

0a j+σ2
1

a j
∑i∈A j Yi+

σ2

σ2
0a j+σ2 µ0

)2

. (4)

3 Data generating mechanism and main result

As it is commonly done in asymptotic analysis, we assume that the observed
datapoints are not generated according to model (1), but rather are independent
and identically distributed from a “true” distribution P∗. In the following we
assume P∗(dy) = δc∗(dy), that is all the observations are equal to a fixed real
value c∗. This is a stylized setting, where we expect the partition generated by
model (1) to converge to [n], i.e. all observations clustered together. However,
Theorem 4.1 in Miller & Harrison (2013) implies that the posterior on the
number of clusters does not converge to 1 as n → ∞. Notice that Theorem 3 in
Ascolani et al. (2023) shows instead that consistency holds with a prior on the
concentration parameter α. In the following theorem we prove that, even with
α fixed, the maximum a posteriori clustering converges to [n], as expected.

Theorem 1. Consider model (1) with kernel as in (3). Let Yi
i.i.d.∼ δc∗ , with

i = 1, . . . ,n. Then, for every (µ0,σ2
0,σ2) there exists N such that for every

n ≥ N it holds A∗(Y1:n) = [n].

Proof. Fix a triplet (µ0,σ2
0,σ2). The statement is proved by showing that there

exists N such that for every n ≥ N it holds

sup
2≤s≤n

sup
A∈τs(n)

P(A | Y1:n)

P([n] | Y1:n)
< 1.

By (4) it is easy to show that there exists a constant K > 0, which does not
depend on s and n, such that α1−s ∏s

j=1 m
(
YA j

)
/m(Y1:n) ≤ eKs for every A ∈

τs(n). Therefore, by (2) we can give the following bound

sup
2≤s≤n

sup
A∈τs(n)

P(A | Y1:n)

P([n] | Y1:n)
≤ sup

2≤s≤n
sup

a∈σs(n)
eKs ∏s

j=1 Γ(a j)

Γ(n)
,

where σs(n) =
{

a ∈ {1, . . . ,n}s | ∑s
j=1 a j = n

}
. Moreover, it is not difficult to

show that supa∈σs(n) ∏s
j=1 Γ(a j) = Γ(n− s+1), which implies

sup
2≤s≤n

sup
A∈τs(n)

P(A | Y1:n)

P([n] | Y1:n)
≤ sup

2≤s≤n
eKs Γ(n− s+1)

Γ(n)
=: sup

2≤s≤n
f (s).
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Notice that f (s+ 1) > f (s) if and only if s > n− eK , so that f (s) attains its
maximum either at 2 or n. Therefore we conclude

sup
2≤s≤n

sup
A∈τs(n)

P(A | Y1:n)

P([n] | Y1:n)
≤ f (2)+ f (n) =

e2K

n−1
+

eKn

(n−1)!
→ 0

as n → ∞, as desired.

4 Discussion

We showed that, with constant data, despite inconsistency for the number of
clusters, the maximum a posteriori clustering converges to the “true” partition.
It would be of great interest to extend this result beyond such simple data
generating mechanism, even if the identification of a “true” clustering becomes
less clear: see Section 3 of Rajkowski (2019) for some examples. This will be
object of future work.
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ABSTRACT: We present how MI can be considered for addressing missing values
in the context of clustering. For achieving this goal, we present a novel imputation
method entitled FCS-homo, as well as a pooling method for the set of partitions ob-
tained from each imputed data set. The proposed methodology is evaluated using a
simulation study in comparison with state of the arts methods. We start by treating
the case where the observations are generated from a gaussian mixture model with
missing at random values. The study is completed by experiments based on various
real data sets where the distribution of the data is unknown. These first results tend
to show that multiple imputation is a efficient method for handling missing data in
clustering, especially when the data distribution is unknown.

KEYWORDS: clustering, missing data, multiple imputation

1 Introduction

Among methods for addressing missing values, direct methods (DM) and mul-
tiple imputation (MI) are probably the most commonly considered. DM can
be described as methods consisting in adapting the analysis methodology to
be applied on incomplete data. This can be achieved by optimising a criterion
based on incomplete data rather than complete data. DM are theoretically ap-
pealing, but they require a dedicated methodology for each analysis method.
On the contrary, MI consists in separating the missing data issue to the analysis
by proceeding in three steps. The first step is the imputation step, which con-
sists in replacing each missing values by several plausible values. At the end,
several imputed datasets are available. The second step consists in analysing
each imputed dataset according to the analysis method wished. Finally, the
third step consists in pooling the several analysis results to obtain a unique
one. By separating the imputation step and the analysis step, MI allows apply-
ing any statistical analysis when missing values are imputed and consequently
is less analysis method dependent that DM. However, it can also introduce bias
if the imputation method is not well chosen in regard to the analysis model.
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Several DM have been proposed to perform clustering with missing values.
For instance, Marbac et al. (2019) proposed an EM algorithm to estimate pa-
rameters from a gaussian mixture model, Chi et al. (2016) proposed to extend
kmeans criterion for accounting for missing values, while Hathaway & Bezdek
(2001) extended fuzzy c-means algorithm by an optimal completion strategy.
However, addressing missing values by MI remains challenging in clustering
for at least two reasons. Firstly, because the imputation step requires specific
models. Indeed, available imputation methods are generally based on the as-
sumption that observations are drawn from a unique distribution, which is ob-
viously inconsistent with the underlying assumptions made in cluster analysis.
The second reason is that the way to pool partitions obtained at the second MI
step is unclear. Indeed, the pooling rules in MI are theoretically applied on the
parameters from a generalized linear model and not on a categorical variable
as a partition of observations. Thus, addressing missing values in clustering by
MI is not straightforward.

In this work, we propose a novel methodology for addressing missing val-
ues in clustering by MI. It consists in a novel imputation method entitled FCS-
homo as well as a novel pooling rule.

2 Method

2.1 FCS-homo

Fully conditional specification (FCS) (van Buuren et al., 2006) consists in im-
puting missing data by assuming a distribution for each variable conditionally
to the others and then impute each variable sequentially according to each
ones. FCS methods are often used in practice since they allow a better fit of
the imputation model. More precisely, let P(Xj|X− j;ζ j) be the distribution of
Xj (1 ≤ j ≤ p) conditionally to other variables, denoted X− j, and parameter-
ized by ζ j. For instance, P(Xj|X− j;ζ j) =N (X− jβ,σ2) with ζ j = (β,σ). Then,
FCS methods impute the mth data set as follows:

• initialize missing values of X by random draws from observed values
• for j in 1 ... p

a generate ζ j based on observed individuals on Xj
b impute Xjaccording to P(Xj|X− j;ζ j)

• repeat until convergence

In a context of cluster analysis, we propose a FCS method which accounts
for the cluster data structure. To achieve this goal, each regression model is
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conditional to a supplementary variable W indicating the cluster of each ob-
servation. Let Z = (W,X) be the incomplete data set gathering the cluster
variable W , which is unknown and considered as fully missing, and X the in-
complete data set. Then, the algorithm involves two main steps: imputation of
Z given W and vice versa. Generating Z given W is performed using regres-
sion models including an intercept specific to each cluster P(Z j|Z− j,W ;ζ j) =
N (Z− jβ+µw,σ2) ζ j = (β,σ,µw) while generating W given Z is performed
using linear discriminant analysis (see Audigier et al. (2021) for more details).

2.2 Pooling

Given M imputed data set, we denote Ψm the partition obtained from the data
set m. This partition can be obtained from any clustering algorithm (e.g. k-
means). The set (Ψm)1≤m≤M is pooling using Non Negative matrix Factoriza-
tion which consists in looking at the partition Ψ̄ such as

Ψ̄ = argminΨ
M

∑
m=1

δ(Ψ,Ψm) (1)

with δ(Ψ,Ψm) the number of disagreements * between Ψ and Ψm. An associ-
ated instability can also be computed as proposed in Audigier & Niang (2022).

3 Results

The proposed methodology is evaluated by comparison with DM approaches
under MAR mechanisms. For this purpose, we focus on three clustering tech-
niques: the Gaussian mixture model, the k-means and the fuzzy c-means. The
study is first carried out on data simulated according to a Gaussian mixture
model in which we vary the separability of the clusters, their number, their
size and their correlation structure. Missing data are generated according to
different mechanisms varying by their nature (MCAR or MAR) and by the
rate of missing values. In a second step, both approaches are compared on
different real data sets where the distribution is not known but where a clus-
ter structure is well identified. In both cases, the three clustering techniques
are applied using the theoretical number of clusters and the missing data are
handled either directly or by multiple imputation. The resulting partitions are

*δ(Ψ,Ψ′) = ∑(i,i′) δii′ with δii′ = 1 if individuals i and i′ are in the same cluster for a given
partition and not for the second, while δii′ = 0 otherwise
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then compared to the expected partition according to the adjusted Rand index
(ARI).

4 Discussion

The study illustrates that the use of multiple imputation for handling miss-
ing values in clustering generally improves the partition quality for geometric
clustering methods, namely k-means and fuzzy c-means, compared to direct
k-pod and optimal completion strategy approaches (respectively). As for the
results on the parametric Gaussian model approach, similar performances are
observed when the data are derived from a Gaussian mixture. Nevertheless,
significant differences are observed on real data where the direct methods of-
ten lead to lower ARI.

Thus, these first results tend to show that MI is a efficient method for
handling missing data in clustering, especially when the data distribution is
unknown. Moreover, this technique allows to apply any clustering method
on incomplete data, whereas direct methods remain specific to the clustering
technique considered.
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ABSTRACT: Data-integration of multiple studies is key to understanding and gain-
ing knowledge in statistical research. However, such data present artifactual sources
of variation, also known as covariate effects. Covariate effects can be complex and
can lead to systematic biases. If not corrected, these biases may lead to unreliable
inferences. Here, we will present novel sparse latent factor regression and multi-study
factor regression models to integrate heterogeneous data.
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1 Introduction

Data integration is crucial when separate data sources are collected on the same
phenomenon. For instance, different economical studies may test the effi-
cacy of several policy-making interventions; clinical trials may analyze various
treatments using data gathered at different times. Integrative models provide
gains in statistical power and help to take accurate decisions sooner. However,
a lack of appropriate integration tools could lead to unreliable inference.

Data integration in biomedicine is particularly challenging as some mea-
surements reappear across different studies. However, high throughput exper-
iments display both biological and artifactual sources of variation. Here, we
will present novel sparse factor regression and multi-study factor regression
models to integrate such heterogeneous data.

The factor regression (FR) model (Avalos-Pacheco, 2018, Avalos-Pacheco
et al., 2022) provides a tool for data exploration via dimensionality reduction
and sparse low-rank covariance estimation while correcting for a range of co-
variate, or artifactual, effects, such as batch effects. A limitation of FR models
is the inability to isolate the study-specific latent structure.
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The multi-study factor analysis (De Vito et al., 2019, De Vito et al., 2021)
is able to handle multiple high-throughput experiments, simultaneously achiev-
ing two goals: a) to capture common component(s) across studies and b) to
isolate the sources of variation that are unique of each study. We generalize
the multi-study factor analysis by adopting a factor regression approach. Our
proposed multi-study factor regression (MSFR) will enable us to jointly obtain
the group-specific covariances and the common component.

In the conference presentation, we will discuss the use of several sparse
priors, local and non-local (Johnson & Rossell, 2010), for learning the dimen-
sion of the latent factors. Our approaches provide a flexible methodology for
sparse factor regression, which is not limited to data with covariate effects. Our
models are fitted via scalable expectation–maximization (EM) algorithms.

We will also show the usefulness of our methods by presenting several ex-
amples, with a focus on bioinformatics applications. For all the examples, we
give a visual representation of the latent factors of the data. Thereafter, in the
case of cancer genomics data sets, we provide survival predictions leveraging
the obtained factors; in the case of a Hispanic community health nutritional-
data study, we obtain dietary patterns, associating each factor with a measure
of overall diet quality related to cardiometabolic disease risk.

2 Model specification

We follow the model proposed in Avalos-Pacheco et al., 2022. We consider
vectors xis = (xi1s,xi2s, . . . ,xips)⊤ ∈ Rp, observed for i = 1, . . . ,n individuals
in study s,s = 1, . . . ,S. The factor regression model defines xis as a regression
on pv observed covariates vis ∈ Rpv , and q low-dimensional latent variables
fis ∈ Rq, also known as latent coordinates or factors xis = θvis +Φfis +eis,
where θ ∈ Rp×pv is the matrix of regression coefficients, Φ ∈ Rp×q,q ≪ p,
is the loading matrix, eis ∈ Rp is the error, distributed as eis ∼ N(0,T −1

s )
independently across i = 1, . . . ,n, with T −1

s = diag{1/τls, l = 1, . . . , p} as the
idiosyncratic precision matrix for study s. Factors are assumed to be standard
normal, fis ∼ N(0,I), independent across i = 1, . . . ,n and independent of eis.

We first set priors for the precisions τls | η,ξ ∼ Gamma(η/2,ηξ/2),, and
regression parameters θ ∼ N(0,ψI). The loadings Φ = {φ jk, j = 1, . . . , p,k =
1, . . . ,q} play a key part in factor models as they allow us to improve shrink-
age and simplify interpretation. Here, we set a non-local spike-and-slab prior
on φ jk, as in Avalos-Pacheco et al., 2022. This prior distinguishes the loading
elements that should be included, modelled by the slab component, from those
that should be excluded, modelled by the spike component. We consider a mix-
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ture distribution with a product moment non-local prior (Johnson & Rossell,
2010) for the slab components and a normal prior for the spike components:

p(φ jk | γ jk) = (1− γ jk)N(φ jk;0,λ0)+ γ jk
φ2

jk

λ1
N(φ jk;0,λ0). (1)

We set a hierarchical prior over the latent indicator γ jk | ζk ∼ Bernoulli(ζk),
γ jk | ζk ∼ Beta

( aζ
k ,bζ

)
, j = 1, . . . , p,k = 1, . . . ,q.

Inference is done by an efficient EM algorithm with closed-form expres-
sions. We refer to Avalos-Pacheco et al., 2022, for details, prior elicitation,
parameter initialization, post-processing and description of the EM algorithm.

3 Pancreatic cancer

To quantify the effectiveness of our approach, we study an unpublished gene
expression data set for individuals with pancreatic cancer. We analyze two
studies collected under different experimental conditions and sizes (n1 = 27
and n2 = 183). We select the 5% genes with the highest total variance across
all samples (p = 1,177 genes). We normalize the data to have zero mean and
unit variance and included the type of tissue (normal or tumour) and a study
indicator as covariates for our model. In order to evaluate the effect of the non-
local prior, we compare our model (FR-NLSS) with methods that use a normal
spike-and-slab prior (George & McCulloch, 1993) (FR-LSS), instead of our
proposed non-local spike-and-slab prior, and that do not leverage any sparse
inducing priors (FR-NS). Since the data generating ground truth is unknown,
we assess the performance of our estimators by evaluating the cross-validated
log likelihood. Table 1 presents the results from 10 independent runs of 10-
fold cross-validation. It displays the selected number of factors q̂, the number
of estimated non-zero loadings ||Φ̂||0 and the cross-validated loglikelihood.

Table 1. Cross-validated log-likelihood analysis for pancreatic cancer dataset.

q̂ ||Φ̂||0 Log-likelihood
FR-NS 100.0 117,700 -1,644.8

FR-LSS 63.0 74,151 -1,622.0
FR-NLSS 19.0 22,363 -1,157.6

The results in Table 1 show that our proposed FR-NLSS obtained a better
out-of-sample log-likelihood with fewer factors and sparser Φ than our com-
petitors. Thus, we conclude that FR-NLSS reconstructed the data better than
the other methods.
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4 Extensions

We extend the FR Model to the Multi-study factor setting (De Vito et al., 2019,
De Vito et al., 2021). We refer to this generalization as the Multi-study factor
regression (MSFR) (De Vito & Avalos-Pacheco, 2023+).

Marginally, the underlying covariance of xis of the FR Model is Σs =
ΦΦ⊤+T −1

s . In the MSFR setting, the Σs becomes

Σs = ΦΦ⊤+ΛsΛ⊤
s +T −1

s , (2)

where Λs ∈Rp×qs ,qs ≪ p, is the study-specific loading matrix. The new Σs al-
lows to explain the total variance into the variance of the common factors, the
variance of the study-specific factors and the idiosyncratic error. In the con-
ference presentation, we will discuss the FR and MSFR in detail, and we will
apply our models to different gene expression and nutritional epidemiology
data sets. Both our FR and MSFR will be demonstrated to be valuable to visu-
ally depict the underlying factors of the data; and to make survival predictions
or to identify dietary patterns and study the embedded risk of cardiometabolic
disease. We refer to De Vito & Avalos-Pacheco, 2023+ for further details.
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ABSTRACT: In large-scale assessments, students’ ability is usually evaluated using
multiple test forms, which require the use of several items. In this context, calibrating
items before the official tests can be difficult for different reasons. A solution is to
calibrate items during the first test administration and then use these estimates in the
subsequent ones. However, this approach does not consider that the populations could
be significantly different in terms of average ability, which is particularly problematic
when the final output of this process is a merit ranking. Our findings show that, on one
side, calibrating item parameters on populations with differences in ability does not
affect the final merit ranking and, on the other side, the differences in item parameter
estimates are significant.
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1 Introduction

In large-scale assessments, it is common practice to construct multiple test
forms so as to increase test security and allow for tests to be implemented
on different exam dates and times (van der Linden & Adema, 1998). This
organisation requires using many items (in order to construct parallel versions
of the same test for each group) and the application of equalisation methods
to make the scores obtained on different test forms comparable, a relevant
concern when the final output of this process is a merit ranking. Additionally,
field trials are usually required to calibrate test items when using IRT models
(Hambleton et al., 1991) to assess subjects’ ability in large-scale assessments.

It is worth understanding that calibrating items before official tests could
be problematic for different reasons. Among these, the set of items used is
usually not large enough to give the possibility of using in advance items that
should then constitute the official tests. A possible approach is to calibrate
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items on the first group of subjects and then use the item parameter estimates
to assess the ability of students who are subsequently administered the tests.

A problem that might arise in some contexts, such as university entrance
tests, is that the population on which items are calibrated at the baseline may
differ significantly from those at subsequent administrations. For example, it
is reasonable to assume that students who took the test at the baseline have
lower abilities than those who took it later, at least because they had more time
to study and became familiar with the type of test.

The present work aims at answering the following research questions:
RQ1 Is tests equalisation, and consequently the merit ranking, affected by

differences in the population average ability?
RQ2 How does calibrating items on a certain population affect estimates of

ability in a population that differ for the average ability levels?

2 Statistical Model

In certain contexts, the structure of the test is characterised by the presence
of subsets of questions concerning the same topic (referred to as testlets),
which implies a violation of the hypothesis of local independence of the items
(van der Linden & Hambleton, 2013). Thus, models capable of managing the
multidimensionality of the latent trait are required.

In multidimensional item response theory (Reckase, 2009), the bifactor
(BF) model (Holzinger & Swineford, 1937) is often used due to its good per-
formance on different kinds of data. In the BF model, a common (i.e., generic,
primary) latent variable is assumed to underlie all test items. In addition, spe-
cific latent variables (one for each testlet) account for the residual dependence
remaining after considering the primary latent construct and due to the pres-
ence of the testlets. Primary and specific latent variables are orthogonal.

Let us consider a set of individuals i = 1, . . . ,n taking a test with j =
1, . . . ,J items divided into s= 1, . . . ,S sections. In the two-parameter BF model
for dichotomous items Yi js, the probability that test taker i correctly answer
item j of section s is defined as

P(Yi js = 1|θ0i,θsi) =
1

1+ exp(−[d j +a0 jθ0i +as jθsi])
,

where θ0 is the primary latent variable, θs is the s-th specific latent variable, d j
denotes the difficulty parameter of item j, a0 j and as j represent the discrimina-
tion parameters of item j on the primary and specific constructs, respectively.
If item j loads on specific factor s, as j ̸= 0, otherwise as j = 0.
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3 Simulation Study

To answer the two research questions RQ1 and RQ2, we performed a simula-
tion study. A test with 50 dichotomously-scored items was generated for the
study, including four testlets composed of 7, 15, 15, and 13 items, respectively.
Parameters a0 j were sampled from a log-normal distribution logN(0,0.5) con-
strained to [0.5,2]. Moreover, for each testlet parameters as j were sampled
from a uniform distribution [0.5,0.7], corresponding to a moderate degree of
local dependence between items. Difficulty parameters d j were sampled from
a normal distribution N(0,1). We assume that the same set of items is admin-
istered in two different time occasions.

The generic and the specific latent abilities θ0 and θs were generated from
a mixture of two independent Gaussian distributions:

f (θ) = πA fA(θ)+πB fB(θ)

where f (.) is the normal density and πA and πB are the mixture component
weights, with πA+πB = 1. The mean of the mixture is µM = πAµA+πBµB, and
its variance is σ2

M = πAσ2
A +πBσ2

B +
[
πAµ2

A +πBµ2
B − (πAµA +πBµB)2].

We assume the mixture components fA and fB have mean µA = −2 and
µB = 2 respectively, and common variance σ2 = 1. We simulate two groups of
subjects with different ability distributions: the baseline group (group 1) with
80% of subjects from the first component and 20% from the second one, and
a second time occasion group (group 2) with 20% of subjects from the first
component and 80% from the second one. Note that with this configuration,
the mixture distributions of groups 1 and 2 have different means but equal
variance. For each group, N = 10,000 response patterns were simulated. In
addition, a set of 500 subjects was assumed to repeat the test, and thus, they are
present in both groups, with an ability improvement of 0.5 in group 2 compared
to group 1. Parameters estimation was carried out through the EM algorithm
implemented in the R package mirt.

4 Results

To investigate RQ1, we considered the merit ranking obtained by estimating
a BF model under three different strategies: (i) considering the two groups
separately; (ii) considering the two groups together; (iii) using for the second
group the item parameters estimated on the first one. The merit ranking result-
ing from each strategy was compared to the true ranking by using the Pearson
correlation coefficient.
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The correlation coefficients are equal to 0.86, 0.96 and 0.96, respectively,
showing no differences in estimating subjects’ abilities θ0 for the two groups
together or using the parameters estimated on the first groups in the second one
in terms of merit ranking. Conversely, the coefficient obtained when the two
models are estimated separately (strategy i) is remarkably lower. This result is
in line with the literature on equalisation methods with non-equivalent groups.

To answer RQ2, we compared some constrained BF models. We first as-
sessed a base (unconstrained) model (Model 0), in which the 30% of items in
each testlet were in common and the other ones were considered as different,
so that different parameters were estimated for the same item administered in
the two time occasions. Then, four models (Model 1-4) nested in the base one
were estimated, where the items within each testlet were constrained to have
equal parameters across the two time occasions. We compared the constrained
models with the base one using BIC, AIC, and the log-likelihood. Results
provide evidence in favor of the base model, recognising an effect on item pa-
rameter estimation when populations present remarkable differences in ability.

5 Conclusions

Preliminary results above presented advice against separately calibrating tests
administered in different occasions and outline the presence of an effect of
populations with different ability distributions on the item parameters. Future
work will focus on extending the simulation study to more general scenarios,
such as different mixtures of populations and tests with only a sub-set of com-
mon items.
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ABSTRACT: A potential outcome approach to causal inference is used to infer the average 
exposure-response curve describing the relationship between daily temperature and daily 
mortality in the city of San Sebastian (Spain) for the period 2010-2015. The analysis relies on 
the estimate of the generalized propensity score and specification of a model for potential 
outcomes. The impact of extreme temperatures on population health is also provided, in terms 
of attributable deaths.  
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impact assessment. 

1 Introduction 
Climate change is now regarded as the greatest challenge of the 21st century. 
Extreme temperature levels are one of its consequences. Many studies, based on the 
analysis of daily time series through regression approaches, have identified a U-, V- 
or J-shaped relationship between environmental temperature and mortality, 
indicating that heat and cold are associated with death counts. For the first time, this 
study estimates this relationship by using a potential outcome approach to causal 
inference. The method proposed is based on the generalized propensity score and 
uses a semi-parametric specification for the outcome model. We ground on the 
method used in Forastiere et al. (2020) for the analysis of the short term effect of air 
pollution on mortality in the city of Milan (Italy).  

2 Data 
The health and exposure data used in this paper have been collected for the city of 
San Sebastian (Basque Country region of Spain) for the period 2010-2015. They 
include the daily number of deaths from natural causes, cardiovascular and 
respiratory causes, grouped by age (0-64, 65-84, 85+); meteorological variables 
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(temperature and humidity); and several known confounders of the temperature-
mortality relationship (average pollutant levels and an indicator of influenza 
epidemics). 
 

3 Methods 
The analyses are performed separately for cold and warm season.  
According to the potential outcome framework, under the Stable Unit Treatment 
Value Assumption (Imbens and Rubin 2015), we denote by Yi (z) the potential 
number of deaths in day i (i = 1, 2,…, n) if z were the level of temperature in that 
day. For each day we only observe one potential outcome, that is, the one 
corresponding to the actual exposure of that day, Zi, all the other potential outcomes 
with z  Zi being missing. We denote the observed outcome with Yi, while Xi = (x1i, 
x2i, …, xKi) is the vector of the K covariates measured on day i.  
We are interested in the average Dose Response Function (aDRF), defined as: 
 

µ(z)=n-1 i Yi (z).                               [1] 
 
Under the unconfoundedness assumption, we fill in missing potential outcomes in 
[1] following the procedure described in Hirano and Imbens (2004), which requires 
the specification of a model for the exposure, used for GPS estimation, and a model 
for the outcome.  
The model for the exposure is a log-Normal model on the daily average temperature 
Zi, given the confounders (Xi) and seasonality terms. The confounders are included 
in the model through flexible functions and interactions are allowed. The GPS for 
day i at the level of exposure z is then defined as the value of the density function for 
log(Z), derived from the estimated model:  
 

r(z, Xi s)-1exp[-(log(z)-mi)2/(2s2)], 
 
where mi is the value of log(Z) predicted by the model for day i, and s2 is the 
estimated error variance.  
The model for the outcome is a Poisson regression model on the daily mortality Yi, 
given both daily average temperature Zi and the value of GPS estimated for z = Zi, Ri 
= r(Zi, Xi). Different specifications of the outcome model can be adopted: we define 
a bivariate spline on temperature and GPS.  
Once the two models have been estimated, there is the phase of prediction and 
potential outcome imputation. After defining a grid of temperatures, we calculate, 
for each day, the GPS on each value z* of the grid. Then, we plug in z* and the 
corresponding GPS, r(z*, Xi), in the estimated outcome model, in order to predict 
the mortality level Yi (z*) that would be observed if the temperature in day i were 
equal to z*. Finally, for each z*, the predicted potential outcomes are averaged over 
the days, so that an exposure-response curve is obtained.  
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We estimate the aDRF for mortality from all causes and by cause of death, for all 
age and separately by age group. Also, we estimate, in terms of attributable deaths,  
the impact of temperatures higher or lower than specific thresholds on population 
mortality. Confidence intervals are obtained through a block-bootstrap procedure. 
A crucial point in the analysis is the specification of the exposure model. The 
validity of the specification adopted for the exposure model is assessed by checking 
the covariate balance as described in Hirano and Imbens (2004). 

4 Results 
Extreme temperatures, both cold and warm, have a detrimental effect on health. The 
so-called `turning point', defined as the temperature where the aDRF is minimum, is 
found to be around 19.5° C. The analysis by age group confirms these effects for 
people over 65 years of age, while negligible effects are observed for younger 
people (0-64). 
Taking the value of 19.5°C as an optimal threshold for health, we estimate that, in 
the warm season, exceeding it has caused 115 deaths (90% CI: 22.39, 229.31) 
during the study period. In the cold season, staying below the same threshold is 
estimated to have caused 483 deaths (90% CI: 97.21, 836.64). 

5 Discussion 
This study states the existence of a causal relationship between temperature and 
mortality and provides an approach to estimate the average dose-response function, 
as well as the impact of extreme exposures. Extensions of the method could allow 
the estimation of an entire curve on the whole year and the investigation of the 
delayed effect of temperature on mortality.   
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MEASUREMENT INVARIANCE TESTING OF LATENT
CLASS MODELS USING RESIDUAL STATISTICS AND

LIKELIHOOD RATIO TEST

Zsuzsa Bakk 1

ABSTRACT: In latent class (LC) analysis a standard assumption is conditional inde-
pendence, that is the indicators of the LC are independent of the covariates given the
LCs. We compare the likelihood ratio based MIMIC test to residual statistics (BVR
and EPCinterest ) for identifying nonuniform direct effects (DEs) of covariates on the
indicators of the LC model. The simulation study results show that the LR test and
EPCinterest correctly identifies direct effects more often than the BVR.

KEYWORDS: latent class analysis, measurement invariance, bivariate residuals, EPC,
likelihood ratio test

1 Introduction

An often violated basic assumption of latent class modeling is the conditional
independence assumption, also known as measurement equivalence. That is
the association between the indicators of the LC model and the covariates are
conditionally independent given the latent classes. Measurement equivalence
can be tested by likelihood ratio based tests that compare the measurement
equivalent model to models where direct effects (uniform or nonuniform) of
covariates are allowed on the indicators of the LC model. An alternative ap-
proach for detecting missfit of the conditional independence model is to use
residual statistics that can show violations of the conditional independence as-
sumption. In this presentation we compare the power of the likelihood ra-
tio based MIMIC model (Masyn, 2017) and that of two residual statistics
(EPCinterest and BVR) to detect the most complex type of measurement in-
variance, nonuniform direct effect. We first introduce the simple LC model,
followed by a short presentation of the 3 approaches to detect missfit, compare
them via a simulation experiment and conclude.

2 Latent class model

Consider the vector of responses Yi = (Yi1, . . . ,YiK), where Yik denotes the re-
sponse of individual i on one of the K categorical indicator variables, with
1 ≤ k ≤ K and 1 ≤ i ≤ N. Latent class (LC) analysis assumes that respondents
belong to one of the T categories (“latent classes”) of an underlying categorical
latent variable X which affects the responses (Goodman, 1974). The measure-
ment model for Yi can then be written as:



62

p(Yi|Z) =
T

∑
t=1

p(X = t|Z)
K

∏
k=1

p(Yik|X = t).(2)

Usually the conditional class membership probabilities P(X |Z) are param-
eterized using a multinomial logistic regression parametrization:

P(X = t|Z = zi) =
exp(αt +βZi)

1+∑T
t=2 exp(αt +βZi)

. (3)

The model defined in Equation 2 assumes that given the LC variable X
there is no direct relationship between Z and Y - a fairly common assumption
in LV modeling known as measurement invariance. This assumption can be
relaxed:

p(Yi|Zi) =
T

∑
t=1

p(X = t|Zi)
K

∏
k=1

p(Yik|X = t,Zi).(4)

The most complex nonuniform DE can be parameterized as:

P(Y = y|Z = zi) =
exp(αt +βXt +βZi|X)

1+∑T
t=2 exp(αt +βXt +βZi|X)

. (5)

The simpler uniform DE would mean dropping the class specific formulation
of the effect of Z.

3 Identifying direct effects in LC models

3.1 Residual statistics

The BVR evaluates the residual association between each possible pair of ob-
served variables ( j, j′) using a χ2 test with 1 degree of freedom. The statistics
can be formally defined as:

BV R j j′ = 1/P∑
j
∑
j′

(n j j′ −En j j′)2

n j j′
(6)

where the expected association En j j′ for the covariate- indicator associa-
tion is defined based on equation 2 in such a way that given the LC variable
X there is no association between Z and Y. A downside of BVR is that the
assumption of χ2 distribution with 1 df does not hold (Oberski et al., 2017).

.
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Based on equations 5 we can see that the test of measurement invariance
often takes the form of restricting a set of parameters to 0. In our case this
refers to βZ|X . Let us consider a restriction on a vector of such logit coeffi-
cients as ψ = 0. In a general form the EPCinterest can be formulated as:

EPCinterest = P( ∂θ
∂ψ′ )(ψ−ψ′) (7)

where P is a matrix selecting the parameters of interest and θ is the vector
of free model parameters. EPCinterest can be seen as a linear approximation
of the relationship between the free and fixed parameters of interest (Oberski
et al., 2017).

3.2 Likelihood ratio based stepwise multiple indicator multiple cause
(MIMIC) modeling

The likelihood ratio based MIMIC approach (Masyn, 2017) is a multistage
approach where nested models are compared with the goal to find the least re-
strictive well fitting model. The approach starts by comparing the latent class
model with covariate (see Eq 2) to the model including all possible nonuni-
form DEs (see Eq 5). In case the LR test of the 2 nested models shows better
fit of the all-DE model, the assumption of no DE is rejected, and a stepwise
approach follows to identify the source of misfit. In the 2nd step an item by
item testing of non uniform DE is performed, followed by an item by item
testing of uniform DE for items for which a non uniform DE was confirmed in
step 2. The approach has in total 7 possible steps, but we focus only on first 2
steps that focus on identifying nonuniform DE.

4 Simulation study

Table 1. Percentage of correctly(T) and wrongly (F) identified DE with BVR, EPC
and LR test separately for the low and high DE condition per latent class separation
condition averaged over all sample sizes

Class High DE Low DE
sep BVRT BVRF EPCT EPCF LRT LRF BVRT BVRF EPCT EPCF LRT L
high ,18 ,00 ,98 ,16 ,97 ,18 ,00 ,00 ,41 ,10 ,63 ,
med ,22 ,00 ,86 ,20 ,83 ,29 ,00 ,00 ,44 ,12 ,60 ,
low ,03 ,00 ,41 ,15 ,52 ,34 ,00 ,00 ,37 ,15 ,42 ,
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To test the ability of the 3 approaches to identify the presence of non uni-
form DE we run a simulation study with a LC model with 3 equal sized classes
(class 1 low on all indicators, class3 high on all, class 2 low on first 3, high on
last 3 indicators) measured by 6 indicators and regressed on a covariate. A
full factorial design crossing sample size (250,500,1000,200), class separation
(Y |X : .70,.80,.90), strength of DE (low, βZ|X = .25; high, .75) was used. DE
was allowed on items 1 and 6.

When comparing the LR test for all nonuniform DE vs no DE model in all
simulated conditions the more complex model was chosen, as such results are
not detailed. The results in Table 1 show that the BVR is not a good statistic to
identify a nonuniform DE, while the performance of EPCinterestand LR test is
better, their ability to identify a DE strongly depends not only on the strength
of the DE, but also on the quality of the measurement model. With weaker
measurement models all statistics fail to have a nominal rate close to the 95%.

5 Discussion

In a simulation experiment we compared EPCinterest , BVR and LR tests to
identify a nonuniform DE. The results show that the EPCinterestand LR test are
more reliable, yet only in a few conditions meat the nominal 95% true-positive
rate while maintaining a high false positive rate (between .16% to .29%). The
BVR test was the most unreliable. We can conclude that nonuniform DE in
most conditions is under identified by all estimators.
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1 Harvard University, (e-mail: fbargaglistoffi@hsph.harvard.edu)
2 Sant’Anna School for Advanced Studies, (e-mail:

costanza.tortu@santannapisa.it)
3 Yale University (e-mail: laura.forastiere@yale.edu)

ABSTRACT: While most of causal inference studies typically disregard interference
between units, it’s important to recognize that agents often interact through social,
physical, or virtual connections, and the effect of the intervention can propagate from
one unit to other connected individuals in the network. In this work, we propose
an innovative machine learning algorithm called Network Causal Tree (NCT), which
combines a tree-based methodology with a Horvitz-Thompson estimator to assess the
heterogeneity of treatment and spillover effects with respect to individual and network
characteristics, in the presence of clustered network interference. Using NCT, we
examine the heterogeneous effects of information sessions on the adoption of a new
insurance policy in rural China.

KEYWORDS: causal inference, interference, networks.

1 Introduction

According Cox (1958), inteference occurs when the treatment assignment of
one unit affects the outcome of other units. In the context of policy interven-
tions, interference can arise from many types of interactions, such as social,
physical, or virtual connections. The standard Rubin Causal Model for causal
inference studies (Rubin, 1986) assumes no interference. However, when in-
terference is likely to occur but is ignored, it introduces bias into the estimates
(Forastiere et al. , 2021). Furthermore, understanding spillover effects is cru-
cial for measuring the overall impact of an intervention and enhancing the ef-
ficiency of treatment assignment mechanisms. As a result, recent research has
developed innovative methodologies to address interference.(see, e.g., Sobel,
2006; Rosenbaum, 2007). In parallel to this field of research on interference,
researchers have developed machine learning algorithms to assess the hetero-
geneity of treatment effects with respect to individual characteristics (Athey &
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Imbens, 2016). The intuition behind these algorithms is that sub-populations
are partitioned by iteratively separating those groups whose estimated average
treatment effect deviates the most.

In this study, we present a cutting-edge integration of the aforementioned
two topics in the field of causal inference through the introduction of a novel
machine learning algorithm, named Network Causal Tree (NCT), that investi-
gates the heterogeneity of both treatment and spillover effects with respect to
individual, neighborhood and network characteristics, in randomized settings.
NCT works in the presence of clustered network interference, where agents
belong to separate clusters and spillover mechanisms occur only within clus-
ters, according to the links of a cluster-specific network. Conditional effects
are estimated by using an extended version of the Horvitz-Thompson estima-
tor (Aronow & Samii, 2017) to allow for clustered network interference. We
showcase the NCT methodology to assess the effect of intensive training ses-
sions to promote the uptake of a new weather insurance policy for rice farmers
living in villages of rural China (Cai et al. , 2015). In this setting, interference
is likely to arise, since treated households may share what they have learned
with the interfering untreated households.

2 Methods

2.1 Clustered Network Interference

We examine a sample V consisting of N units distributed across K distinct
clusters. Each cluster is represented by the indicator k ∈ K = [1, . . . ,K], and
within each cluster k, units are identified by the index i = 1, . . . ,nk.. These
units interact within a clustered network structure GGG, where units belonging to
the same cluster may share connections, while connections between different
clusters are absent. Essentially, GGG can be seen as a collection of K separate sub-
graphs, denoted as Gk. The assignment of units to the intervention is random,
and we use the binary variable Wik ∈ 0,1 to represent the treatment assigned
to unit i in cluster k. The observed outcome for each unit is indicated by Yik.
Additionally, for each unit ik, we have access to a set of individual or network
characteristics denoted as Xik.

To define the potential outcomes (Rubin, 1986), we have to rely on some
assumptions on the interference mechanism. Here, we assume that Clustered
Network Interference (CNI) takes place. Under CNI i) the spillover mechanism
is confined to units within the same cluster, and ii) an individual’s outcome
is influenced by the treatment status of units directly connected to her/him
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based on the cluster-specific network. Potential outcomes are indexed with re-
spect to the individual intervention Wik and to the neighborhood treatment Gik,
which represents a numerical synthesis of the treatment assignment vector of
the neighbors: Yik(Wik,Gik). Here, the variable Gik represents a binary network
exposure based on a threshold function applied to the number of treated neigh-
bors: Gik equals 1 if the unit ik has at least one treated neighbor, 0 otherwise.
We outline four estimands of interest τ(w,g;w′,g′), two treatment effects and two
spillover effects, where treatment (spillvoer) effects are defined by comparing
average potential outcomes under different levels of the individual (neighbor-
hood) treatment status, while keeping as fixed the level of the neighborhood
(individual) treatment.

2.2 The Network Causal Tree algorithm

The NCT algorithm is designed to detect and estimate heterogeneous treatment
and spillover effects in randomized settings, under CNI. NCT is also able to
discover the heterogeneity with respect to more than one estimand simultane-
ously. NCT takes as inputs the observed data {Wik,Yik,Xik}ik∈V , the global
network GGG, the experimental design and a vector of weights ω(w,g;w′,g′) rul-
ing the extent of which estimands contribute to the criterion function, while
it returns as output a partition Π of the covariate space, together with point
estimates and standard errors of the conditional average causal effects:

The algorithm provides three main steps. In the first step, NCT randomly
splits clusters in two sets - the discovery set and the estimation set. In the
second step, using the discovery set, NCT sprouts a tree according to the in-
sample splitting function and stops when a stopping criterion is met (reached
maximum depth, insufficient sample size in the leafs). In the third step, NCT
computes the estimated effects and the corresponding standard errors, in all
the partitions identified at the first step.

3 Empirical results

Data include 4,586 households living in specific villages of rural China and
provide information on the friendship networks connecting households in the
same village. Some households are randomly assigned to receive intensive
information sessions on a new weather insurance policy, while the remaining
households receive simple sessions. Households who have at least one treated
household in their neighborhood are assumed to receive an indirect exposure to
the intervention. The outcome indicates whether the household decides to take
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up the insurance policy. The heterogeneity of treatment and spillover effects
is evaluated with respect to variables that refer either to characteristics of the
household (production area, size) or to characteristics the of the household’s
owner (sex, age, level of education, risk aversion, perceived probability of
disaster, trust in the government).
Results suggest that the most important heterogeneity drivers of the treatment
effect are the production area, the risk aversion and the trust in the government.
Spillover effects are not statistically significant.
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ABSTRACT: A popular approach to the problem of clustering multiple network data
makes use of distance metrics that measure the similarity among networks based on
some of their global or local characteristics. In this context, we propose a novel
Bayesian nonparametric approach to model undirected labelled graphs sharing the
same set of vertices, which allows us to identify clusters of networks characterized by
similar patterns in the connectivity of nodes. Our construction relies on the definition
of a location-scale Dirichlet process mixture of centered Erdős–Rényi kernels. An ef-
ficient Markov chain Monte Carlo scheme is proposed to carry out posterior inference
and provide a convenient clustering of the multiple network data, while the number
of clusters in the population is not set a priori but inferred from the data. The perfor-
mance of our approach is investigated by means of an extensive simulation study and
illustrated with the analysis of a dataset on brain networks.

KEYWORDS: Bayesian nonparametrics, centered Erdős–Rényi model, Dirichlet pro-
cess, mixture model, multiple network data.
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ABSTRACT: Building on dependent normalized random measures, we consider a prior distribution for a
collection of discrete random measures where each measure is a linear combination of a set of latent mea-
sures, interpretable as characteristic traits shared by different distributions, with positive random weights.
The model is non-identified and a method for post-processing posterior samples to achieve identified infer-
ence is developed. This uses Riemannian optimization to solve a non-trivial optimization problem over a
Lie group of matrices. Our approach leads to interesting insights for populations and easily interpretable
posterior inference.
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1 Introduction

In this short paper, we review the methodology for modeling and comparing probability distri-
butions discussed in Beraha and Griffin (2022). Modeling a collection of random probability
measures is an old problem that has received considerable attention in the Bayesian nonpara-
metric literature, see, e.g. Quintana et al. (2022) for a recent review. We consider here specifi-
cally the case where data are naturally divided into groups or subpopulations, and data are par-
tially exchangeable. Let (y1, . . . ,yg) denote a sample of observations divided into g groups where
y j = (y j1, . . . ,y jn j). By de Finetti’s theorem, partial exchangeability is tantamount to assuming that
there is a vector of random probability measures (p1, . . . , pg)∼ Q such that

y j1, . . . ,y jn j | p j
iid∼ p j, j = 1, . . . ,g

p1, . . . , pg ∼ Q
(1)

and independence holds across groups. In particular, we focus here on mixture models of the kind

p j(y) =
∫

Θ
f (y | θ)p̃ j(dθ)

where the p̃ j’s are almost surely discrete random probability measures.
The construction of a flexible prior Q that can suitably model heterogeneity while borrowing

information across different groups has been thoroughly studied in Bayesian nonparametrics. See
Quintana et al. (2022) for a recent review of such constructions. Previously proposed approaches
consider constructing p̃1, . . . , p̃g in a hierarchical model fashion (Teh et al., 2006; Camerlenghi
et al., 2019; Bassetti et al., 2020; Argiento et al., 2019), considering convex combinations of shared
and group-specific random measures (Müller et al., 2004), and starting from additive processes
(Griffin et al., 2013; Lijoi et al., 2014).

Within this setting, our goal is to propose a flexible model that, in addition to combining
heterogeneous sources of data, gives an efficient way of representing the difference in distribution
across populations. In particular, we are interested in the situation when the number of groups
g is large relative to the sample size in each group n j. Then, it is likely that the dataset cannot
inform the huge number of parameters that are associated with extremely flexible models and we
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advocate for a more parsimonious model where substantial sharing of information is encouraged
across different groups of data. The setting “large g, small n j” is somewhat reminiscent of high-
dimensional data analysis, where the dimension of each observation is large relative to the sample
size. In this case, latent factor models (see, e.g., Arminger and Muthén, 1998) provide a powerful
tool. In a latent factor model, it is assumed that each observation xi ∈Rp is a linear combination of
a set of H d-dimensional latent factors weighted by observation-specific scores, plus an isotropic
error term. We follow this analogy and propose normalized latent measure factor models, a class
of prior distributions for a vector of random probability measures p̃1, . . . , p̃g. Informally, our model
amounts to considering p̃ j as a convex combination of a set of latent random probability measures.

2 The Model

As already mentioned in the Introduction, we assume

y j1, . . . ,y jn j | p̃ j
iid∼ p j :=

∫

Θ
f (· | θ)p̃ j(dθ)

and that each p̃ j is a normalized random measure, that is

p̃ j(·) =
µ̃ j(·)
µ̃(Θ)

, j = 1, . . . ,g.

Then, the model is specified by a choice of the mixture kernel f (· | ·) and a prior distribution for
(µ̃1, . . . , µ̃g). Let (µ∗1, . . . ,µ

∗
H) be a completely random vector (i.e., a vector of completely random

measures). Let λ jh, j = 1, . . . ,g, h = 1, . . . ,H be a double sequence of almost surely positive
random variables (specific choices of the distribution of the λ jh’s are discussed later). We assume

µ̃ j(·) =
H

∑
h=1

λ jh µ∗h(·). (2)

Note that (2) generalizes the construction in Griffin et al. (2013) and Lijoi et al. (2014).
A suitable model for our applications arises when µ∗1, . . . ,µ

∗
H share their support points. In

particular, we will assume that µ∗1, . . . ,µ
∗
H is a compound random measure (CoRM, Griffin and

Leisen, 2017). That is,
µ∗h(·) = ∑

k≥1
mhkJkδθ∗k (·),

where mhk are positive random variables such that mk = (m1k, . . . ,mHk), k ≥ 1, are independent
and identically distributed from a probability measure on RH

+, and η = ∑k≥1 Jkδθ∗k is a completely
random measure with Lévy intensity ν∗(dz)α(dx). In this case we can write

µ̃ j(·) = ∑
k≥1

(ΛM) jkJkδθ∗k (·), (3)

where Λ is the J×H matrix with entries λ jh, M is a H×∞ matrix, so that Γ=ΛM is a g×∞ matrix
with entries γ jk, j = 1, . . . ,g, k ≥ 1. Note that, in analogy to CoRMs, our model includes shared
weights Jk for all the measures µ̃ j. We find that the additional borrowing of strength obtained
through the Jk’s is useful in practice since, in our applications, the µ̃ j’s are usually similar. Suitable
prior distributions for all the parameters will be specified in later sections.

Equations (2) and (3) share analogies with latent factor models, where the observed variable is
X ∈ Rp and its ℓ-th entry is modeled as Xℓ ≈ ∑H

h=1 ωℓhZh, for Z = (Z1, . . . ,ZH) an H-dimensional
random variable. In particular, we could consider µ∗1, . . . ,µ

∗
H to be measure-valued factor load-

ings and the λ jh’s to be factor scores. This yields an interpretation similar to functional factor
models (Montagna et al., 2012). On the other hand, we could consider the measure-valued vec-
tor (µ̃1, . . . , µ̃g) as a single high-dimensional observation and model it as a linear combination of
measure-valued factors with loadings λ jh’s. Both interpretations make sense and lead to interesting
analogies. We use the latter and call Λ the loadings matrix and the µ∗h’s the latent measures.
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3 Some details about posterior inference and post-processing

Wee perform posterior inference by proposing an ad-hoc Markov chain Monte Carlo algorithm,
which combines Gibbs updates (when the full conditionals belong to known parametric faamilies)
with Hamiltonian Monte Carlo steps (when they do not). For computational nvvenience, we
truncate the support of the CoRM to K atoms, but a slice sampler could be alternatively employed.
Software is implemented using the JAX Python package.

Our model is not tiifiable due to the multiplicative relationship between Λ and (µ∗1, . . . ,µ
∗
h).

This is not surprising, as the same holds for common latent faactor models (Geweke and Sin-
gleton, 1980), where the likelihood is invariant to the action of orthogonal matrices. The non-
identifiability in our model is more severe than the one of common latent faactor models. In faact,
for any Q s.t. Q−1 is well defined, the likelihood is invariant when considering Λ′ = ΛQ−1 and
M′ = QM. Nevertheless, the constraints that Λ′ ≥ 0 (element-wise) and M′ ≥ 0 greatly reduce the
number of matrices Q that can cause non-identifiability. In particular, we do not need to worry
about sign ambiguity.

As in Poworoznek et al. (2021), we propose to find an optimal Q via an ad-hoc post processing
that aims to maximally separate the latent measure µ∗h’s, according to some notion of distance
between measures. Wee formalize the post-processing into a constrained optimization problem
over the special linear group, that is the set of matrices with determinant equal to one. The special
linear group is not a linear space, but can take advantage of its ffferential structure, and tackle
the problem via a Riemannian augmented Lagrangian method that leverages recent advances in
Riemannian optimization ç̧a et al., 2021).

4 Analysis of foornian Income Data

Wee consider the 2021 American Community Survey census data publicly avvailable at https:
//www.census.gov/programs-surveys. Specifically, we consider the PINCP variable
that represents the personal income of the survey responders and restrict to the citizens of the
state of California. For privacy reasons, data are grouped into geographical units, denoted PUMA,
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roughly corresponding to 100,000 inhabitants. There are 265 PUMAs in California. We consider
y j,i to be the logarithm of the income of the i-th person in the j-th PUMA. The total number of
responders is 43,380, with the median number of observations per PUMA being 164.

We assume independent log-Gaussian Markov random field priors for each column of Λ, beta
priors for the J’s and gamma priors for the mhk’s and fix H = 4. Although not shown here, the
four latent measures can be interpreted as representing average incomes (i.e. the distribution is
equal to the whole population distribution), high incomes, median incomes (i.e., the distribution is
concentrated on median values) and low incomes. Figure 1 shows the values of Λ for the four latent
measures associated with the PUMAs in the San Francisco and Los Angeles areas. In particular,
we note that the second factor is highly represented in Palo Alto, home to several tech tycoons, and
San Rafael, home to entertainers. Finally, note that the fourth factor (associated with the lowest
incomes) has a high weight in some areas in Los Angeles. In particular, the PUMA around the port
and the one corresponding to the “south LA” neighborhoods going from University Park to Green
Meadows. This is in agreement with the 2008 Concentrated Poverty in Los Angeles report, which
estimates that the percentage of households in poverty is typically greater than 40% in those areas.
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ABSTRACT: Latent variable models are a powerful tool in various research fields
when the constructs of interest are not directly observable. However, the likelihood-
based model estimation can be problematic when dealing with many latent variables
and/or random effects since the integrals involved in the likelihood function do not
have analytical solutions. In the literature, several approaches have been proposed to
overcome this issue. Among them, the pairwise likelihood method and the dimension-
wise quadrature have emerged as effective solutions that produce estimators with de-
sirable properties. In this study, we compare a weighted version of the pairwise like-
lihood method with the dimension-wise quadrature for a latent variable model for
binary longitudinal data by means of a simulation study.

KEYWORDS: latent variables, binary data, weighted pairwise likelihood, dimension-
wise quadrature

1 Latent variable models for longitudinal binary data

Let y1,y2, . . . ,yp be vectors of p binary observed variables each of them ob-
served at T different occasions, z1,z2, . . . ,zT latent variables that account for
the associations among the p items at each time point. Let u1,u2, . . . ,up be p
random effects that account for the associations of the same item at different
time points. The joint density of the observed variables can be defined as

f (y) =
∫

Rq
g(y | z,u)h(z,u)dzdu

where g(y | z,u) is referred to as measurement part of the model and h(z,u) as
structural part of the model. The dimension of the integral is q = p+T .
The measurement part of the model is defined as a generalized linear model
with the random component given by

g(y|z,u) =
T

∏
t=1

p

∏
j=1

g(yt j|zt ,u j) =
T

∏
t=1

p

∏
j=1

πt j(zt ,u j)
yt j(1−πt j(zt ,u j))

(1−yt j),
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where the first equality comes from the conditional independence assumption
between items and over time. Each g(yt j|zt ,u j) follows a Bernoulli distribution
of parameter πt j(zt ,u j), that is the probability of success of item j at time t.
The systematic component defines the linear predictor ηt j = α0t j +αt jzt +u j
where α0t j’s are item and time-dependent intercepts and αt j’s are item and
time-dependent factor loadings. We consider the logit as the link function
between the systematic component and the conditional means of the random
component.
As for the structural part of the model, we assume that the latent variables
follow an autoregressive process of the first order (Cagnone et al. , 2009) as
follows

zt = φzt−1 +δt (1)

where φ is the autoregressive coefficient, δt ∼ N(0,1) and z1 ∼ N(0,σ2
1).

Moreover, the joint density h(z,u) is a multivariate normal with zero mean
vector and block diagonal covariance matrix Ψ that contains the matrices Ω =
diag j=1,...,p{σ2

u j} and the autocovariance matrix Γ of the latent variables.

2 Model estimation

Model estimation is usually performed by using a full maximum likelihood
method. Given a sample of size n, the log-likelihood is given by

L(θ) =
n

∑
i=1

log f (yi,θ) =
n

∑
i=1

log
∫

Rq
g(yi | zi,ui)h(zi,ul)dzidui (2)

where θ is the vector of parameters to be estimated. A problem related to
the maximization of the log-likelihood is that, in general, the multidimen-
sional integral in (2) is not solvable analytically. Recent solutions proposed
in the literature to solve this problem include the pairwise likelihood (PL)
approach (Lindsay, 1988) and the dimension-wise (DW) quadrature method
(Bianconcini et al. , 2017). In this work, we compare DW with a weighted
version of PL (Varin & Czado, 2010).
The PL estimator is obtained by maximizing bivariate likelihood products that
contain the greatest quantity of model parameter information. In the latent
variable model for longitudinal binary data described in Section 2, the bivari-
ate density for a pair of responses is

f (yi jt ,yi j′t ′ ;θ) =
∫

g(yi jt |zit ,ui j)g(yi j′t ′ |zit ′ ,ui j′)h(zt ,zt ′ ,u j,u j′)dztdzt ′du jdu j′ .
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The dimension of the integrals involved in the expression of f (yi jt ,yi j′t ′ ;θ) is
four and if j = j′ or t = t ′ it reduces to three. Thus, they can be easily approx-
imated using the Gauss Hermite (GH) quadrature method. As close pairs are
more informative, we use a PL likelihood constructed from marginal proba-
bilities of observed pairs less distant than d ≥ 0 time points. This produces a
weighted log PL likelihood of order d defined as

pl(d)(θ;y) = ∑
i

∑
j, j′,t,t ′

log f (yi jt ,yi j′t ′ ;θ)I[0,d](t ′ − t). (3)

I[0,d] is the indicator function, equal to 1 if (t ′ − t) ∈ [0,d] and 0 otherwise.
The DW method is based on the following representation of the marginal den-
sity function

f (y;θ) = |Cmo|
∫

Rq

∏p
j=1 g(y j|Cmob∗+bmo)h(Cmob∗+bmo)

φ(b∗;0,I)
φ(b∗;0,I)db∗ =

= |Cmo|
∫

Rq
m(b∗)φ(b∗;0,I)db∗ = |Cmo|Eφ[m(b∗)] (4)

where b = (z,u), Σmo = CmoC′
mo and φ(·) is the normal density function.

DW consists in approximating the function m(b∗) as follows (Bianconcini
et al. , 2017)

m̂(b∗) =
s

∑
l=0

(−1)l
(

q− s+ l −1
l

)
ms−l(b∗) =

s

∑
l=0

Alms−l(b∗) (5)

where ms−l(b∗)=m(0, · · · ,b∗k1
,0 · · · ,b∗ks−l

, · · · ,0) and Al =(−1)l
(

q− s+ l −1
l

)
.

Replacing (5) in (4) we obtain the approximate density function

fa(y;θ) = fL + |Cmo|
[

s−1

∑
l=0

Al

∫

Rs−l
∑

k1<...<ks−l

ms−l(b∗)φ(b∗k1
) · · ·φ(b∗ks−i

)db∗k1
..db∗ks−l

]
.(6)

where fL denotes the classical Laplace approximation of the integral when
s = 0. The dimension of the integrals in expression (6) depends on the choice
of s. With low values of s, the integrals can be easily approximated using the
GH quadrature. In the extreme cases of s = 0 and s = q, we obtain the classical
Laplace and the adaptive GH quadrature method respectively.
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3 Simulation study: preliminary results

We perform a simulation study with p = 3, T = 6, n = 200. We consider the
UnWeighted (UW) PL function where all the pairs are involved and the PL of
order d = 1,2,3. As for DW, we set s = 0,1,2. For both methods, the number
of quadrature points of GH is fixed at 8. 500 replications are generated for each
condition of the study. From the results (Table 1) it is evident that DW with
s = 2 shows the best performance for almost all the parameter estimates. As
for PL, in this design, we don’t observe relevant differences for different d and
UW. We will further explore the effect of T on the PL method by increasing it.

Table 1. Estimated bias and rmse (in brackets), p = 3 and T = 6, n = 200.

True PL DW
UW d = 1 d = 2 d = 3 s = 0 s = 1 s = 2

α1 = 1.00
α2 = 0.96 −0.11(0.55) 0.08(0.39) 0.16(0.58) 0.13(0.49) −0.21(0.24) −0.12(0.22) −0.02(0.18)
α3 = 1.07 −0.02(0.33) 0.05(0.40) 0.14(0.55) 0.09(0.44) −0.27(0.30) −0.24(0.29) −0.09(0.21)
φ = 0.50 0.01(0.11) −0.02(0.11) −0.02(0.11) −0.02(0.10) 0.07(0.10) 0.01(0.09) −0.02(0.09)
σ2

1 = 2 −0.19(1.22) 0.26(1.24) 0.21(1.13) 0.17(1.10) 0.23(0.93) 0.46(1.11) 0.29(0.93)
σ2

u1 = 1 −0.02(0.29) 0.02(0.30) 0.03(0.32) 0.02(0.31) −0.30(0.42) −0.26(0.41) −0.08(0.31)
σ2

u2 = 1 −0.07(0.38) 0.07(0.39) 0.08(0.40) 0.07(0.42) −0.20(0.34) −0.14(0.34) −0.01(0.33)
σ2

u3 = 2 0.01(0.63) 0.09(0.74) 0.12(0.78) 0.09(0.71) −0.40(0.57) −0.30(0.51) −0.09(0.47)
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ABSTRACT: Initial Coin Offerings (aka ICOs) have gained a prominent interest in
the FinTech world as an alternative way to fundraising for innovative and cutting-
edge business ideas. So far, academics have studied drivers of success without posing
specific attention to the products or activities proposed by the ICOs. In this paper, we
investigate the possible nexus between ICOs and Environmental, Social and Gover-
nance (ESG) indicators, by studying a set of 621 ICOs. Specifically, we extract key-
words related to ESG from whitepapers associated with each ICO and build a variable
which acts as a signal of attention to sustainability topics. Our research hypothesis
concerns the evaluation of whether ICOs oriented towards ESG are more likely to
raise expected funds successfully. Preliminary results confirm such a hypothesis.

KEYWORDS: Initial coin offering (ICO), ESG, Sustainability, Blockchain-based crowd-
funding, Machine learning

1 Introduction

Nowadays themes like Environment, Social Change, and Governance are be-
coming more and more important. We could state that, for a company, Envi-
ronmental, Social, Governance investments and reporting represent one of the
ways to keep up with the market. As a matter of fact, companies with stronger
ESG propositions tend to have higher growth, higher worker efficiency, lower
volatility, cost decrease, and fewer institutional interventions. Furthermore, in
recent years, start-ups and the most innovative businesses turn to alternative
sources of capital instead of classic channels, such as Initial Coin Offerings
(ICOs). An ICO is a new way to fund businesses and initiatives, it is one
of the blockchain-based processes that allow the emission of a utility token
rather than a security or equity token. The growing popularity of the ICOs
is clearly due to several related benefits, such as the high level of offered re-
turn on investment, high liquidity, fast financing, cost minimization and high
availability, which are increasingly encouraging innovative investors and busi-
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nesses to abandon traditional financing methods. However, it is also a young
and ever-changing market full of significant risks.

Our paper puts a special emphasis on whether ESG dimensions influence
ICOs performances. Thus, we propose to investigate the role played by an
ESG flag covariate, appropriately built as described in the following section,
in predicting the probability of success when collecting the expected amount of
funds during the funding round. To this end, we use textual analysis techniques
for creating a proper sustainability flag variable; afterwards, we fit logistic
models with several specifications along the ESG dimensions and controls.

2 Data

For the database, we scraped data from the website ICOmarks.com and
downloaded 7574 Initial Coin Offerings (ICO). The available information in-
cludes ICO details, such as Website, Whitepaper, Whitelist and MVP, Bounty
and Bonus, start/end date, country, ICO classification, such as Category (Tech,
Finance, Energy, Infrastructure), ICOmarks rating, Token details, such as Ticker,
Platform, Amount available for sale, Technology involved, Financials, such as
ICO’s Token price, (crypto)-currency accepted, Total funds raised, Hard/Soft
cap for the funding round, Team and Advisors size and Social Media details,
such as media on which the ICO is advertised or where the investors can dis-
cuss. We decided to focus only on ICO and we downloaded all the available
whitepapers. Then, we cleaned the downloaded data because of typos and dif-
ferent decimal/thousands separator and we converted all ICO prices reported
in fiat or crypto money or in terms of ICO’s tokens to U.S. Dollars, using the
average FX rate of the ICO’s start date.

Our target variable ICOSUCCESS, similar to previous literature (for exam-
ple Meoli & Vismara, 2022), is the binary flag of ICOs success/failure, eval-
uated as the ratio of raised funds and the hard cap, i.e. the maximum amount
of funding expected to be raised. If the ratio is above 0.5, we assign success,
failure otherwise.

The whitepapers have been analyzed through advanced textual analysis
techniques based on Bidirectional Encoder Representations from Transform-
ers (BERT) architecture (Devlin et al., 2019), to extract information about the
characteristics of the proposed business idea. In particular, we use pre-trained
models specifically tailored to ESG indicators and financial-related vocabular-
ies (Huang et al., n.d.). The outcome of the model is a probability score for
each classification class, e.g. Environmental, Social, Governance, estimating
how much pertinent the whitepaper’s text is to the topic. Such a step is cru-
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cial for building the ESGFLAG covariate used in the analysis: we assign the
value of 1 if at least one of the three probabilities (E, S or G) is greater than
the probability of non-relevance with the topics. Additionally, the length of
the whitepaper LOGWORDS indicates the logarithm of the number of words
in each paper.

3 Methodology and Results

We fit a logit model with OLS estimation, taking into account year-quarter,
country and sector fixed effects, as well as clustering the error by country.
Given the imbalance in the target variable, we opt for a weighted logit model,
to mitigate the impact of the "failure" class. Table 1 reports the results. Results
are stable over the two scenarios. In particular, we observe that the success of
an ICO is promoted when the project shows an interest in the ESG topic.

Thus, preliminary results appear to confirm the nexus between ICOs’ suc-
cess and ESG. The attention towards sustainability-related topics in general
seems to favour fundraising activities. This is in line with a public audience’s
tendency in evaluating better every activity connected to ethics and responsible
behaviour. Such analysis will be further improved and robustified by enlarging
the dataset and evaluating more control variables and scenarios.
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Table 1: Predicting ICOs success with logistic model.

Variable 1 2

ESGFLAG 0.129** 0.159**
(0.0727) (0.0723)

DURATION -0.461** -0.442*
(0.192) (0.230)

RATING 0.126*** 0.105**
(0.0403) (0.0473)

TEAMSIZE 0.0461*** 0.0362***
(0.00756) (0.00787)

ADVISORSIZE 0.0441*** 0.0356*
(0.0144) (0.0186)

WHITELIST 0.149*** 0.162
(0.0553) (0.138)

BOUNTY -0.238** -0.195
(0.109) (0.121)

BONUS -0.0916 -0.0281
(0.148) (0.116)

PRESALE -0.273*** -0.0950
(0.0894) (0.0801)

LOGWORDS 0.177 0.194
(0.162) (0.156)

Observations 871 869
Pseudo R2 0.043 0.067
Quarter-Year effects No Yes
Country effects No Yes
Category effects No Yes
Clustered Std. Err. Country Country

Notes: The table reports coefficients and their
standard error (in parentheses). The out-
come variable is the binary flag of ICO’s suc-
cess/failure and all variables are defined in Sec-
tion 2. Data span over the period 2014-2019.
Estimation method is OLS with standard errors
clustered by ICO’s country. The bottom part of
the table reports which fixed effects are used in
each model specification. The *, ** and ***
symbols denote the p-values at 10th, 5th and 1st

significance level, respectively.
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ABSTRACT: This paper presents a model for clustering three-way asymmetric proximity data 
which represent flows or exchanges between objects observed at different occasions. In order 
to account for systematic differences between occasions, the asymmetric data are assumed to 
subsume two clustering structures common to all occasions: the first defines a standard 
partitioning of all objects which fits the average amount of the exchanges; the second one, 

them are allowed to remain unassigned. The model is fitted in a least-squares framework and 
an efficient Alternating Least Squares algorithm is given. 

KEYWORDS: Asymmetric dissimilarities, three-way data, partition. 

1 Introduction 
In many real-world applications, information is measured or observed in the form of 
several pairwise asymmetric proximity (similarity or dissimilarity) matrices related to 
the same N objects observed at H occasions (i.e., times, subjects, scenarios). Such 
kind of data represent three-way two-mode asymmetric proximity data which, without 
loss of generality, can derive from mobility flows, brand-switching, import/export 
exchanges or other type of transactions or trade. For example, international student 
mobility between countries over several years gives rise to a three-way asymmetric 
proximity array where in each year-matrix the rows correspond to the origins and the 
columns to the destinations of the mobile students. 

In the analysis of asymmetric data, the asymmetry has often been ignored by 
symmetrizing the proximities (i.e., averaging the two different values for any pair of 
objects). Nonetheless, if one hypothesizes that the asymmetries are meaningful and 
systematic across occasions, special models are needed (see Saito & Yadohisa, 2005, 
Bove et al., 2021, for extended reviews). 

Clustering three-way asymmetric proximity data is a complex task since each 
proximity data matrix generally subsumes a (more or less) different clustering of 
objects due to the heterogeneity of the occasions and the asymmetry may incorporate 
some important information about clustering. Chaturvedi and Carroll (1994) 
generalized the INDCLUS model to asymmetric proximities by identifying two 
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different sets of (overlapping) clusters of the N objects (for rows and columns, 
respectively) common to all occasions, while the three-way heterogeneity is 
accounted for by occasion-specific weights for the clusters. 

In order to extract as much information as possible from the three-way 
asymmetries taking into account the heterogeneity of the occasions, we present here 
a generalization to asymmetric three-way data of the model proposed by Vicari (2020) 
for clustering an asymmetric dissimilarity matrix. To account for the asymmetric 
structure of the data, the model relies on the decomposition of the asymmetric 
matrices into the sum of their symmetric and skew-symmetric components which are 
jointly modelled. The asymmetric dissimilarities are assumed to subsume two 
clustering structures common to all occasions: the first defines a standard partitioning 
of all objects which fits the symmetric component of the exchanges; the second one, 
which fits the imbalances, defines an incomplete partitioning of the objects, where 
some of them are allowed to remain unassigned. Objects within the same clusters in 
both clustering structures share the same behaviours in terms of exchanges directed 

hat the 
partition to fit the imbalances is allowed to be incomplete to better identify the 
directions of the exchanges, so those objects not assigned to any cluster (incomplete 

. Moreover, to account for the 
heterogeneity of the occasions, occasion-specific sets of weights are estimated which 
account for both the average amounts and the directions of the exchanges. 

In Section 2, the model is formalized in a least-squares framework and an 
appropriate Alternating Least Squares algorithm is given. 

2 The model 
Let  be a three-way two-mode asymmetric array of size ( ), where the 

 frontal slices consist of square asymmetric matrices  ( ) of pairwise 
dissimilarities between  objects observed in  occasions and where the generic 
element  is generally different from . 

The model proposed here aims at clustering the  objects by decomposing the 
observed asymmetries into symmetric and skew-symmetric effects, modelled as 
functions of two nested partitions of the objects which subsume clustering structures 
common to all occasions. Specifically, all occasions are supposed to share the same 
partition of the N objects into  disjoint clusters  uniquely identified by an 
(N×J) binary membership matrix  (  for  and 

 and  for ), where  if object  belongs to cluster 
 and  otherwise. Since any object is required to be assigned to some cluster 
, such a partition is referred to as complete partition. Furthermore, a second partition 

of the N objects into J clusters  common to all occasions is identified by an 
(N×J) binary membership matrix  (  for  and 

), where any object  is allowed either not to be assigned to any cluster or to 
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belong to cluster  if it belongs to cluster  in the complete partition, i.e.  
(  and ). The partition identified by V is referred to as an 
incomplete partition because a number  ( ) out of N objects are allowed to 
remain unassigned to any cluster. Moreover, the complete and the incomplete 
partitions are common to all occasions and linked each other, the latter being 
constrained to be nested into the former one (  for ). 

Hereafter,  denotes the identity matrix of size N,  and  denote the matrix 
of size (A×B) of all ones and the column vector with A ones, respectively. 

Let us recall that any square matrix  ( ) can be uniquely decomposed 
into a sum of a symmetric matrix  and a skew-symmetric matrix , which are 
orthogonal to each other (i.e., trace( ) = 0), as 

 ,  ( ).  (1) 

Both components in  can be modeled by defining two clustering structures 
depending on matrices U and V, respectively, as introduced in Vicari (2020) for a 
two-way asymmetric dissimilarity matrix.  

Specifically, the symmetric component  and the skew-symmetric component 
 for occasion h are modeled by the two clustering structures introduced in Vicari 

(2014, 2018) and depend on the common complete membership matrix U and the 
common incomplete membership matrix V, respectively, as 

 , ( ),  (2) 

 , ( ),  (3) 

where  and  are (J×J) occasion-specific diagonal weight matrices associated with 
the clusters of the complete and incomplete partition, respectively, and the error terms 

 and  represent the parts of  and  not accounted for by the model, 
respectively. For identifiability reasons, any matrix  is constrained to sum to zero: 

. 
Models (2) and (3) can be combined in (1) to specify the model accounting for the 

asymmetric dissimilarities between clusters 

 

  , ( ), (4) 

where  is the additive constant term and the general error term  represents the 
part of  not accounted for by the model. 

It is worth noting that all occasions are assumed here to share the same clustering 
structure but with different patterns of weights which account for the heterogeneity of 
the occasions. In fact, the occasion-specific diagonal entries of  and  provide 
quantifications of the exchanges between clusters in terms of amounts and directions 
and allow to measure at what extent the exchanges vary across occasions. 
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In model (4), the complete and the incomplete membership matrices U and V, the 
weight matrices Ch and Dh ( ) and the constants bh ( ) can be 
estimated by solving the following least-squares fitting problem: 

 (5) 

subject to 

   ( ; )  and    ( ), (5a) 
   ( ; )  and    ( ), (5b) 

   ( ). (5c) 

Problem (5) can be solved by using an Alternating Least-Squares algorithm which 
alternates the estimation of a set of parameters when all the others are kept fixed. The 
algorithm proposed here estimates in turn: a) the complete and incomplete 
membership matrices U and V by sequentially solving joint assignment problems for 
the different rows of U and V: given any row i, setting  implies that either 

 or  for ; b) the occasion-specific weight matrices Ch and 
Dh ( ) by solving regression problems; c) the additive constant bh (

) by successive residualizations of the three-way data matrix. The main steps 
are alternated and iterated until convergence and the best solution over different 
random starts is retained to prevent from local minima. 

Results from applications to real data will be presented to show the performance 
of the algorithm and the capability of the model to identify common clusters of objects 
which best account for their pairwise dissimilarities. 
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ABSTRACT: As the network representation is widely used to describe problems in
an increasing number of disciplines, novel methodologies are needed to handle such
complexity. In particular, cluster analysis is an interesting and challenging task in
the network framework. In this work, we focus on how to represent networks for
fuzzy clustering and how to apply standard fuzzy algorithms for clustering multiple
networks on synthetic data.

KEYWORDS: Ensembles of Networks, Fuzzy Clustering, Networks Clustering, Whole-
graph Embedding.

1 Introduction

Networks represent a powerful model for problems in different scientific and
technological fields, such as neuroscience, molecular biology, biomedicine, so-
ciology, social network analysis and political science. The increasing number
of network applications leads research on clustering analysis develop rapidly.

In a network framework, a well-known approach to the clustering problem
is the detection of clusters of nodes (or communities). A new approach to the
clustering problem is to consider a single network as the unit of interest and to
detect clusters of networks.

What is proposed here is to apply fuzzy cluster analysis techniques to iden-
tify clusters of networks by choosing an adequate representation. The novelty
here lies in the usage of a fuzzy approach: indeed, related works use only
a hard approach to clustering, meaning that each network can belong to one
cluster only. However, networks may have characteristics in common to more
than one cluster, and therefore in such situations, a more flexible approach is
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more adequate. In this sense, the fuzzy approach guarantees major flexibil-
ity than the hard approach, by allowing each network to belong to all clusters
according to different membership degrees.

2 Network representation

To cluster networks, we need to find an adequate representation. In the early
proposals on this topic, networks have been represented using some topolog-
ical characteristics, but very different networks might be represented by the
same values of the chosen features, making the data analysis difficult. More-
over, the well-known adjacency matrix representation does not account for dif-
ferences in specific parts of the network and therefore ignores its topological
characteristics.

To overcome these limits, we study two types of network representations:
a probabilistic representation of graphs (either Node Distance Distribution or
Transition Matrices, see Granata et al., 2020 for details) and a whole-graph
embedding representation (Joint Embeddings by Wang et al., 2021). By using
the probabilistic representation, the Jensen-Shannon (JS) Divergence is then
used to compute pairwise distances between networks and finally to obtain
a distance matrix; instead, the embedding techniques provide a vector space
representation of the networks to identify a space that is optimal with respect
to some characteristics; the output is therefore a units by variables matrix,
where units are networks and variables are networks’ features.

3 Algorithms for fuzzy clustering

Once we have chosen how to adequately represent the networks, it is possi-
ble to apply fuzzy clustering algorithms. We use Non-Euclidean Fuzzy Re-
lational Clustering, introduced by Davé & Sen, 2002, when the networks are
represented by a matrix of distances; instead, we applied the Fuzzy k-Means
(Bezdek, 1981), when they are in form of a feature matrix.

4 Simulation

We empirically analyze our proposal on synthetic dataset. In detail, the simu-
lated networks are generated using the Multiple Random Eigen Graphs (MREG)
model, defined in Wang et al., 2021. Particularly, an MREG dataset with 200
graphs having 100 nodes each was generated using the MREG model. The
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(a) NEFRC applied on M N (b) [FkM applied on JEd=2

Figure 1: t-SNE representation of clustering results of NEFRC, FkM (MREG networks). Mis-
classified units are circled in black. The intensity of the colors is given by the membership
degree of each network to the corresponding assigned cluster.

graphs belong to 2 classes, with 100 graphs in each class. The clustering task
consists of grouping networks with a similar distribution of edges.

Here, for the sake of brevity, we show two applications of fuzzy clustering
algorithms (NEFRC and FkM) to two networks’ representations: M N , i.e. the
distance matrix obtained by applying JS divergence on Node Distance Distri-
bution representation of networks; JE, i.e. the feature matrix resulting from
Joint Embedding technique. Table 1 shows the algorithm’s performance using

Table 1: Main results of the application of NEFRC the Distance Matrix M N and FkM to Feature
Matrix JE (MREG networks)

NEFRC FkM
M N JE

ARI AMI ARI AMI

Median 0.81 0.72 0.9 0.83
IQR 0 0 0 0
SD 0.01 0.02 0.01 0.01

the clustering validity indices. In detail, high ARI and AMI indices values
show that most of the networks are correctly assigned to their original clusters.

The graphical representation allows us to explore the results more in-depth
in Figure 1. Figure 1 shows that the two clusters are well separated; misclas-
sified networks are highlighted by the circled points. The fuzzy membership
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degrees allows us to deeply study the misclassified units. By applying NE-
FRC to distance matrices, we notice that, on average, approximately 40% of
misclassified networks are in the middle of the two cluster prototypes, hav-
ing membership degrees close to 0.5 and being represented by blurry colors
in Figure 1 (a). Regarding the application of FkM to JE, we notice that 20%
of misclassified units are represented by very blurry colors in Figure 1 (b) and
are softly assigned to both the clusters. Therefore, membership degrees allow
us to consider the uncertainty of an assignment of a unit to a cluster and then
possibly add information on clustering interpretation: this represents one of
the main advantages of a fuzzy approach.

5 Final Remarks

This study explores clustering analysis when the statistical units are networks.
To this extent, we focus on different methodologies that can provide a suit-
able representation of the sample of the networks for subsequent data analysis.
We applied fuzzy clustering algorithms on such representations, using stan-
dard metrics to evaluate their performance on synthetic datasets. Our analysis
provides valuable hints for cluster analysis in a network framework.
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ABSTRACT: Anomaly detection has a long history in Statistics, with one of the most
effective approaches being robustness. First, a model describing the majority of the
data is assumed. Second, its parameters are robustly estimated. Then, the distance of
all the points from such a model is evaluated. Eventually, extremely far (i.e., unlikely)
observations are flagged as outliers. Visually, this procedure is well described by the
well-worn Tukey’s box-and-whisker plot. Thanks to its robustness properties, it is
probably the graphical tool mostly adopted to highlight anomalies in univariate data
sets.

This work aims at investigating if the same strategy can be exploited in circular
data analysis, i.e., for data lying on the boundary of the unit circle. For this kind of
data, a specific boxplot has been designed. However, its first formulation did not fo-
cus on anomaly detection. It was rather conceived as an exploratory tool to display
the main features of a circular data set. Reliyng on a non-robust estimate of the data
dispersion, it will be simply misleading if used to visualize anomalies. A robust cir-
cular boxplot is then introduced. It will be able to correctly identify circular outliers
under a specific parametric model.

KEYWORDS: Circular boxplot, directional statistics, von Mises distribution.
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ABSTRACT: We introduce a new parametric approach for clustering multilevel sur-
vival data that accounts for the heterogeneity at baseline and random distributions of
the explanatory variables. The proposed method aims to identify clusters of patients
with different survival patterns and uncover the impact of the known hierarchy on
survival within each cluster. The objective function is maximized using a stochastic
EM algorithm tailored to right-censored lifetime data. The proposed methodology can
be seen as a generalization of multilevel cluster-weighted modeling for time-to-event
outcomes. Promising results are showcased on synthetic data.

KEYWORDS: model-based clustering, survival data, frailty models, EM algorithm,
cluster-weighted models

1 Introduction and model formulation

The paper proposes an approach for clustering survival data in which the pro-
cedure takes advantage of cluster-wise different random covariates. Addition-
ally, the heterogeneity at the baseline due to a known hierarchy present in the
sample (e.g., patients within hospitals) is accounted for in the time-to-event
outcome by means of a parametric frailty model. In details, in our proposal a
statistical unit is identified by the triplet (yi j,δi j,xi j) where:

• yi j is the minimum between the survival time ti j and censoring time ci j
for subject i in hospital j,

• δi j = I (ti j ≤ ci j) is the event indicator,
• xi j = (ui j,vi j) denotes the vector of covariates with ui j and vi j respec-

tively indicating the subset of continuous and categorical predictors for
the i j-th unit.
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The entire sample is therefore composed by N = ∑J
j=1 n j observations among

the J hospitals. We further assume that the observed data can be partitioned
into G latent clusters independently of the known J groups. The resulting log-
likelihood for the considered model reads as follows:

ℓ
(
{τg,βββg,µµµg,ΣΣΣg,λg,θg}G

g=1

)
=

G

∑
g=1

{
J

∑
j=1

∑
i∈R jg

logτg +
J

∑
j=1

[

∑
i∈R jg

δi j

(
logh0(yi j)+x′

i jβββg

)
+

+ log

[
(−1)d jgL(d jg)

(

∑
i∈R jg

H0(yi j)exp
(

x′
i jβββg

)
;θg

)]]
+

+
J

∑
j=1

∑
i∈R jg

logφ(ui j;µµµg,ΣΣΣg)+
J

∑
j=1

∑
i∈R jg

logψ(vi j;λg)

}
.

(1)

The quantities h0(·) and H0(·) denote the baseline hazard and cumulative haz-
ard functions, and L(q) is the q-th derivative of the Laplace transform of the
frailty distribution. Depending on the chosen baseline and/or frailty term, the
formulation in (1) encompasses a general family of parametric mixture frailty
models. With φ(·) and ψ(·) we respectively identify the densities of a multi-
variate Gaussian and independent multinomial distributions (one for each cat-
egorical variable), needed to incorporate the cluster-wise different contribution
of the covariates. Further, d jg is the total number of observed events assigned
to cluster g belonging to hospital j, and R jg contains the indexes of the obser-
vations in cluster g and hospital j. The remaining terms are model parameters
that need to be estimated from the sample. In details, τg represents the mixing
proportion for cluster g, with τg ≥ 0 for all g and ∑G

g=1 τg = 1. The vector of
regression coefficients is denoted with βββg, while θg is the heterogeneity pa-
rameter for g = 1, . . . ,G. Lastly, parameters for the conditionally independent
multinomial distributions within each cluster are compactly identified with λg,
and µµµg, ΣΣΣg denote the mean vector and the covariance matrix of the continuous
covariates.

Maximization of (1) is carried out by means of a stochastic EM algorithm
tailored to right-censored lifetime data (Bordes & Chauveau, 2016). The pro-
posed methodology extends the work in Berta & Vinciotti, 2019 by considering
a time-to-event outcome, leveraging on recent advances in the efficient estima-
tion of parametric frailty models (Munda et al., 2012). To this extent, the goal
of the proposed procedure is twofold. On the one hand, we aim to identify G
clusters of patients with different survival patterns. On the other hand, within
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each cluster we wish to uncover the different impact the known hierarchy has
on the survival. Promising results are reported for synthetic data, as described
in the next section.

Table 1. BIC and ARI for several choices of baseline, number of clusters and frailty
densities in the Multilevel time-to-event cluster-weighted model.

G Baseline Frailty BIC ARI
2 Exponential None -3795.60 0.84
2 Exponential Gamma -3756.93 0.84
2 Weibull None -3279.04 0.93
2 Weibull Gamma -2586.46 0.95
3 Exponential None -3767.83 0.73
3 Exponential Gamma -3597.16 0.67
3 Weibull None -3193.45 0.82
3 Weibull Gamma -2810.98 0.80

2 Results on simulated data

We assess the performance of the proposed procedure on a two components
(G = 2) synthetic population simulated with the genfrail function of the
frailtySurv R package (Monaco et al., 2018). The data generating pro-
cess includes n j = 40 for all j = 1, . . . ,J and J = 10, resulting in a sample
whose size is equal to N = 400. The baseline hazard has a parametric Weibull
distribution, while a Gamma density is used to simulate the frailty term in the
equally sized clusters. The survival time depends on two continuous covari-
ates, whose distribution is multivariate Gaussian with cluster-wise different
mean vectors and equal covariance matrix. Model results are reported in Ta-
ble 1 in which several specifications for the baseline and frailty densities are
considered. The comparison includes also an option with fixed effects only,
denoted with Frailty equals to None in the table. We observe that the model
with Weibull baseline, Gamma frailty and true number of clusters outperforms
the competing methods in both goodness of fit and clustering performance,
showcasing higher values in both Bayesian Information Criterion and Adjusted
Rand Index metrics.
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3 Conclusion

The proposed approach provides a flexible method for analyzing right-censored
lifetime data with random covariates and frailties, making it a valuable tool for
applications in personalized medicine and hospitals evaluation. Some analyses
are currently being accomplished on this regard and they will be the object of
future work.
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ABSTRACT: Class imbalance is a common problem in functional clustering where
some clusters have significantly more curves than other clusters. In such cases, most
clustering algorithms tend to prioritize the majority class, resulting in sub-optimal
cluster assignments. We propose a functional iterative hierarchical clustering ap-
proach to address the issue of class imbalance in functional data clustering. The
performance of the proposed approach is compared with existing approaches. The
proposed approach yields more accurate cluster assignments and a more precise ap-
proximation of the average trajectory of the curves within each cluster.

KEYWORDS: functional data, unsupervised clustering, class imbalance

1 Introduction

Unsupervised functional clustering techniques classify a sample of curves into
homogeneous groups of curves, without prior knowledge of the true under-
lying clustering structure. The two common approaches for clustering func-
tional data are: to obtain an approximation of the functional data in a finite-
dimensional space and then use traditional clustering tools to cluster the result-
ing vectors (Chen et al., 2012 and Wang & Xu, 2017) or to perform functional
model-based clustering (Bouveyron & Jacques, 2011, Bouveyron et al., 2015,
and Centofanti et al., 2023). See Jacques & Preda, 2014 for detailed reviews
of functional clustering methods.

The problem of class imbalance occurs when the number of curves in one
cluster significantly exceeds the number of curves in another cluster, posing
a difficult challenge for most functional clustering algorithms. Minor clusters
are often classified incorrectly into major clusters, which results in inaccurate
cluster assignments and a poor approximation of the average trajectory of the
curves within each cluster.

By extending Carey et al., 2016 iterative hierarchical clustering method to
a functional data context, we provide an approach for clustering imbalanced
functional data.
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2 Functional Iterative hierarchical clustering

The observations of the behavior of the curves at discrete points are subject to
measurement error, that is yi, j = xi(ti, j)+ εi, j, where ti, j denotes the finite set
of times from which one samples the ith curve and the errors εi, j are assumed
to be independently distributed with mean 0 and a constant variance σ2. Given
the observed values yi, j for i = 1, . . . ,N and j = 1, . . . ,Mi. The functional IHC
algorithm performs the following steps:

1. Reconstruct the functional form from the discrete observations: Ap-
proximate the curves via a basis function expansion, that is, x̂i(t) =
∑K

k=1 ckφk(t), and estimate the coefficients of the basis function expan-
sion {ck : k= 1, . . . ,K} using the standard penalized least squares smooth-
ing approach of Ramsay & Silverman, 2005.

2. Cluster the first derivative of the curves: The estimated first deriva-
tive of the curves evaluated at the points ttt = [t1,1, . . . , tN,M] are then given
by the N ×M matrix A = ∑K

k=1 ĉkDφk(ttt), where M = max(Mi) for i =
1, . . . ,N. Let αmin and αmax be the minimum and maximum of the Spear-
man rank correlation between all the possible pairs of the rows of A.
Define [αmin, . . . ,αmax], as a grid of Q equally spaced values from αmin
to αmax. Cluster the rows of A using the iterative hierarchical clustering
method proposed in Carey et al., 2016. Select the optimal αopt so that
the value of the Davies-Bouldin index is minimized.

3 Simulations

The simulated sample curves Xi are realizations of a Gaussian process with the
Matérn covariance function C(s, t) = 0.2×exp(−0.3∥s− t∥), over the domain
I = [0,15]. To obtain six simulated groups of curves we define six different
mean functions: sin(2πt), cos(2πt), sin(4πt +π/2), sin(4πt −π/2), sin(3πt +
π/3) and sin(6πt − π). The six clusters are large, medium, and small in
size, that is N = 500, 500, 200, 15, 10, 3. The sample data are given by, Yi, j =
Xi(ti, j)+ εi, j for i = 1, . . . ,N and j = 1, . . . ,Mi, where εi, j is a normally dis-
tributed random variables with mean 0 and standard deviation σε. We assume
that ti, j are obtained from an equally spaced discretization of the domain and
that this is the same for all curves.

The functional IHC is compared with the following eight state-of-the-art
functional clustering methods: funFEM (Bouveyron et al., 2015), funHDDC
(Bouveyron & Jacques, 2011); SaS-Funclust (Centofanti et al., 2023), func-
tional EMCluster (Chen et al., 2012), functional kCFC (Chiou & Li, 2007),
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FADPclust1 and FADPclust2 (Wang & Xu, 2017). Table (1) presents the accu-
racy of the clustering methods measured by the average Adjusted Rand Index
(µARI) and the average Davies-Bouldin index (µDB). The adjusted rand index

Table 1. The average Adjusted Rand Index (µARI); and Davies-Bouldin index µDB for
all eight functional clustering methods

Method µARI µDB µARI µDB µARI µDB µARI µDB
M=15 M=200

σε = 0.05 σε = 0.15 σε = 0.05 σε = 0.15
funIHC 1.00 0.84 0.99 0.86 0.99 0.82 0.99 0.89
funFEM 0.55 6.18 0.55 0.99 0.53 0.86 0.52 0.95
funHDDC 0.53 1.08 0.47 1.11 0.30 3.29 0.28 3.41
SaS-Funclust 0.53 1.08 0.53 0.97 0.35 3.67 0.15 3.11
Functional EMCluster 0.94 1.08 0.96 1.01 0.68 1.76 0.69 1.90
Functional kCFC 0.97 1.08 0.90 1.52 0.54 1.64 0.64 2.10
FADPclust1 0.68 1.66 0.71 1.14 0.69 1.10 0.71 1.15
FADPclust2 0.68 1.02 0.68 1.16 0.74 0.94 0.71 1.06

ranges from 0 to 1 and measures the similarity between the clustering assign-
ment and the true group structure. Clustering assignments are more accurate
when the value is larger. The Davies-Bouldin index is based on the ratio of
within-cluster distances to between-cluster distances. Clusters that are farther
apart and less dispersed will result in a lower index. The funIHC obtains the
highest adjusted rand index and the lowest Davies-Bouldin index. FunIHC
is the only approach to correctly identify the number of curves in each clus-
ter and the true average temporal pattern. FunFEM, FunHDDC, Sasfunclust,
Functional EMCluster, and Functional kCFC provide a good approximation of
the average temporal patterns for the larger clusters but provide a poor approx-
imation for (N < 200). FADPclust1 and FADPclust2 miss-classifies the small
and medium clusters into the larger clusters resulting in poor approximations
of the average temporal pattern for all clusters.

4 Conclusion

A functional iterative hierarchical clustering approach is proposed that can ef-
fectively address the issue of class imbalance in functional data clustering. The
proposed approach is shown to outperform existing approaches in terms of the
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accuracy in the cluster assignments and the approximations of the average tem-
poral pattern of the cluster members.
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ABSTRACT: The demand for detecting food adulteration has recently grown, due
to its economic and health implications. Infrared spectroscopy provides an efficient
method of collecting data for use in food authenticity analyses. Statistical methods are
routinely employed to analyze spectroscopy data in order to effectively detect adul-
terants in different food items and ensure food authenticity. This work presents a
novel partial membership model for mid-infrared spectral data. Our approach not
only detects the level of adulteration but also provides information on the spectral re-
gions most affected by the adulterant. These insights can be used in combination with
subject-matter expertise to characterize the chemical impact of the adulteration.

KEYWORDS: partial membership, latent variable models, food authentication, shrink-
age prior

1 Introduction

Expensive foods are often subject to fraud and food adulteration, with some of
the original components being removed or replaced by cheaper alternatives, to
lower their prices or to increase their bulk. On one hand, this can represent an
economic problem for food producers. On the other hand, it might also lead to
health issues for the consumers. Therefore, food authenticity studies, which
aim to determine if a sample has been adulterated or not, are increasingly
important. In this work, we examine Fourier transform mid-infrared (MIR)
spectroscopy data, which have been previously used effectively to tackle the
aforementioned problem. To the task, we propose a novel partial membership
model for spectroscopy data. The model introduces a more sophisticated au-
thentication tool, capable of not only identifying the presence of potential adul-
terants in food, but also of determining the percentage of contamination. The
proposed model also enables the identification of which wavelengths are more
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impacted by the adulterant, constituting a starting point for further chemical
analysis. In Section 2, we introduce this new model and outline the adopted
estimation approach. Section 3 reports an application to spectrometry data of
Irish honey samples.

2 Model definition and estimation

Individual-level mixture models generalize standard model-based clustering by
encompassing situations where units can belong to multiple groups simultane-
ously, with varying degrees of membership. This idea has been developed
in two directions, namely mixed membership and partial membership models
(PMM), with the latter being the focus of this work; see Airoldi et al. , 2014 for
a discussion. Let Y = {y1, . . . ,yn} be the observed data. When yi ∈Rp, a mul-
tivariate Gaussian distribution is often assumed for the K component densities.
Therefore, according to PMM, yi is conditionally distributed as

(yi|gi,Θ)∼ Np

⎛

⎝
(

K

∑
k=1

gikΣ−1
k

)−1( K

∑
k=1

gikΣ−1
k µk

)
,

(
K

∑
k=1

gikΣ−1
k

)−1
⎞

⎠ (1)

where Θ = {µk,Σk}K
k=1 denotes mixture component means and covariance ma-

trices, while gi = (gi1, . . . ,giK) is the partial membership vector for the i-th
observation with gik ∈ [0,1], for k = 1, . . . ,K, and ∑k gik = 1. For food authen-
tication purposes, we consider K = 2, with the two components corresponding
to the pure food item and the adulterant, respectively. Moreover, we assume
that the adulterant has an additive and wavelength-specific effect. As such, we
have that

µ1 = µpure = (µpure
1 , . . . ,µpure

p )

µ2 = µad = (µpure
1 +δ1, . . . ,µpure

p +δp)

where δ j, for j = 1, . . . , p, represents the mean-shift induced by the adulterant
on the j-th wavelength. Pairing this specification with shrinkage or penaliza-
tion strategies for δ j’s can lead to the detection of the spectral regions most
influenced by the adulterant. Assuming Σ1 = Σ2 = Σ, model (1) reads as

(yi|gi,Θ)∼ Np (µpure +gi2δ,Σ) (2)

where gi2 is the percentage of adulterant in the i-th sample and δ= (δ1, . . . ,δp).
When dealing with spectroscopy data, the high number of variables can jeop-
ardize the practical usefulness of model (2). For this reason, simplifying as-
sumptions would consider a factor analytic or a diagonal structure for Σ.
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Two alternative ways to estimate model (2) are explored. The first, heuris-
tic, estimation procedure can be used to obtain a naive and fast first model
evaluation. More specifically, it aims to maximize iteratively the following
quantity

SS f =
n

∑
i=1

(yi −µpure −gi2δ)2

with respect to µpure,δ and gi2. As it is, this procedure does not account for the
correlation structure among wavelengths and does not induce shrinkage on δ.
Interestingly, it can be used to provide initial values for a Bayesian estimation
procedure adopting a Dirichlet prior distribution for the membership vectors
gi, i = 1, . . . ,n while, for the δ j’s, j = 1, . . . , p, an horseshoe prior (Carvalho
et al. , 2010) is employed, thus imposing sparsity on the mean-shifts. Lastly,
standard conjugate priors are assumed for µpure, for the diagonal entries of Σ,
or for Λ and Ψ, if a factor analytic structure is considered. The model is es-
timated via MCMC algorithm, by means of the NIMBLE software. Note that
some degree of supervision can be introduced in the estimation. In particu-
lar, for some spectra, gi2 can be assumed known, since it is often possible to
augment the observed data with experimental data with a controlled amount
of adulteration. Unreported analyses showed the beneficial impact of small
amount of supervision.

3 Application to honey data

Our proposal is tested on MIR spectral data comprising samples from pure
honey and samples contaminated with different adulterants (Kelly et al. , 2006).
The data have n = 410 spectra, nH = 290 from pure honey and nB = 120 adul-
terated with beet sucrose in different percentages (10%, 20% and 30%). Prior
to running the analysis, a data aggregation step has been performed to reduce
the overall computational cost. Consequently, the original p = 285 wave-
lengths have been reduced to p∗ = 57 aggregated ones. Some supervision has
been imposed, assuming prior knowledge of the adulteration level for 40 spec-
tra. A diagonal structure for Σ has been considered and the hyperparameters
of the horseshoe prior have been selected following suggestions from Piironen
& Vehtari, 2017. An excerpt of the results is reported in Figure 1. Here, it is
shown how the proposed method is able to precisely estimate the spectrum for
the most adulterated samples, with the 95% credible interval always contain-
ing the true observed values. A closer inspection for the estimated δ j’s shows
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how beet sucrose seems to avve a non negligible impact only on 10 aggregated
w vvelengths in the region from 2377.46 cm−1 to 3166.19 cm−1. These re-
sults, if paired with subject-matter knowledge, can shed light on the chemical
mechanism underlying the adulteration process.
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ABSTRACT: The sparse and smooth functional clustering (SaS-Funclust) method is
presented for sparse clustering of functional data, i.e., to split a sample of curves
into homogeneous groups while jointly detecting the most informative portions of the
domain. SaS-Funclust relies on a functional adaptive pairwise fusion penalty and a
roughness penalty. The former allows identifying the noninformative portion of the
domain, whereas the latter improves the interpretability by imposing some degree of
smoothing to the cluster means. The practical advantages of the SaS-Funclust method
are illustrated through a real-data example in the analysis of the Berkeley growth study
dataset. The SaS-Funclust method is implemented in the R package sasfunclust,
available on CRAN.

KEYWORDS: functional data analysis, functional clustering, model-based clustering,
penalized likelihood, sparse clustering

1 Introduction

In the last years, due to recent developments in technology and computational
power, the majority of the data gathered by practitioners and scientists in many
fields contain information about curves or surfaces that are apt to be modelled
as functional data, i.e., continuous random functions defined on a compact do-
main (Ramsay & Silverman, 2005). Cluster analysis is a key tool in functional
data analysis, just as it is in the multivariate (non-functional) statistical litera-
ture, with applications in several fields. Functional clustering main goal is to
classify a sample of functional data into homogenous groups of curves with
no explicit information on the actual underlying clustering structure (Capezza
et al., 2021). However, as stated in many multivariate data applications, some
characteristics could be entirely unhelpful in revealing the desired clustering
structure. In this setting, to achieve more accurate group identification, it is
important to determine the features in which respect true clusters differ the
most, or equivalently noninformative features that may conceal the true clus-
tering structure. More in general, the methods capable of selecting informative
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features and eliminating noninformative ones are referred to as sparse (Witten
& Tibshirani, 2010; Pan & Shen, 2007; Guo et al., 2010). Recently, the notion
of sparseness has been translated into a functional data clustering framework.
Sparse functional clustering methods have appeared in literature with the aim
of clustering functional data while jointly detecting the most informative por-
tion of the domain and improving both the accuracy and the interpretability
of the analysis (Floriello & Vitelli, 2017; Vitelli, 2023). In this article, we
present the model-based procedure for the sparse clustering of functional data,
which has been recently proposed by Centofanti et al., 2023, and referred to
as sparse and smooth functional clustering (SaS-Funclust). The SaS-Funclust
procedure is implemented in the R package sasfunclust and is openly avail-
able on CRAN.

2 The SaS-Funclust method

Suppose that N vectors YYY i = (yi1, . . . ,yini)
T , of size ni, i = 1, . . . ,N, of ob-

served values of a function fi over the time points ti1, . . . , tini are spread among
g = 1, . . . ,G unknown clusters and the probability of each observation to be-
long to the gth cluster is πg. The function fi is assumed a Gaussian random
process with mean µg, covariance ωg, and values in L2 (T ), which denotes the
separable Hilbert space of square-integrable functions defined on the compact
domain T . We assume that, conditionally on the cluster membership, YYY i is
modelled as

YYY i = fff i + εεεi, i = 1, . . . ,N,

where fff i = ( fi (ti1) , . . . , fi (tini))
T contains the values of the function fi at ti1,

. . . , tini and εεεi is a vector of random errors zero mean and constant variance σ2
e .

In this setting, the SaS-Funclust solution (Centofanti et al., 2023) is obtained
by maximizing the following penalized log-likelihood

Lp (ΘΘΘ|YYY 1, . . . ,YYY N) =
G

∑
g=1

πgψ
(
YYY i;µµµgi,ΩΩΩgi + IIIσ2

e
)
−P (µ1, . . . ,µG) , (1)

where ΘΘΘ= {πg,µg,ωg,σ2
e}g=1,...,G is the parameter set of interest, µµµgi =(µg (ti1) ,

. . . ,µg (tini))
T , ΩΩΩgi = {ωg (tki, tli)}k,l=1...,ni , ψ(·;µµµ,ΣΣΣ) is the multivariate Gaus-

sian density distribution with mean µµµ and covariance ΣΣΣ, and P (·) is a penalty
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function defined as

P (µ1, . . . ,µG)= λL ∑
1≤g≤g′≤G

∫

T
τg,g′ (t) |µg (t)−µg′ (t) |dt+λs

G

∑
g=1

∫

T

(
µ(s)g (t)

)2
dt,

(2)
where λL,λs ≥ 0 are tuning parameters, τg,g′ are prespecified weight functions,
and µ(s)g (·) denotes the sth-order derivative of µg. The first element of the right-
hand side of Equation (2) is the functional adaptive pairwise fusion penalty
(FAPFP). It allows the pair of cluster means to be equal over a specific por-
tion of the domain that is considered noninformative for separating the cluster
means. Thus, the SaS-Funclust method is able to detect, for each cluster pair,
the portion of the domain that is noninformative for the cluster analysis, i.e.,
the portion of the domain where the corresponding cluster means are not fused.
The last term in Equation (2) is a roughness penalty, applied on the cluster
means to further improve the interpretability of the analysis by constraining,
with a magnitude quantified by λs, the cluster means to own a certain degree
of smoothness, measured by the derivative order s. A specific expectation-
conditional maximization (ECM) algorithm is used to maximize the objective
function in Equation (1), after some structure is imposed on fi. Then a cross-
validation procedure is proposed to select the appropriate model parameters.
Further details are in Centofanti et al., 2023.

3 A Real-data Example: Berkeley Growth Study Data

In this section, the SaS-Funclust method is applied to the growth dataset from
the Berkeley growth study. In this study, 31 height measurements of 54 girls
and 39 boys are available from ages 1 through 18. The aim of the analysis is
to cluster growth velocities from age 2 to 17. Figure 1 shows (a) the interpo-
lating growth velocity curves for all the individuals, (b) the estimated cluster
means, and (c) the clustered growth curves for the SaS-Funclust method. The
estimated cluster means are fused over the first portion of the domain, whereas
they are separated over the remaining portion. This implies that on average,
the two identified clusters do not differ over the first portion of the domain,
which can be, thus, regarded as noninformative. The separation between the
two groups arises over the remaining informative portion of the domain, where
two sharp peaks of growth velocity arise, instead. The latter peaks are referred
to as pubertal spurts in the medical literature and in this regard, the obtained
results highlight two primary timing/duration groupings. The male pubertal
spurt occurs later and lasts longer than the female one. The estimated cluster
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Figure 1: (a) Growth velocities, (b) estimated cluster curve means, and (c)
curve clusters for the SaS-Funclust in the Berkeley growth study dataset.

means from some competing methods do not allow for a similar straightfor-
ward interpretation.
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ABSTRACT: This paper concerns the construction of scaling models for large-scale
assessments in education. A scaling model, which makes use of information from both
responses to cognitive assessment and background survey items, produces plausible
values for individual students. There are two major challenges when building a scaling
model – (1) a large number of background variables and (2) many missing values
in the background survey data. To tackle these challenges, we propose a variable
selection approach to latent regression modelling. The proposed approach handles
missing data by iterative imputation and controls variable selection error by a data-
splitting procedure.

KEYWORDS: Latent regression, large-scale assessment, variable selection, missing
data, imputation

1 Problem Setup

Consider data collected from N students, where data from different students are
independent. For each student i, the data can be divided into two parts – (1) re-
sponses to cognitive items and (2) non-cognitive predictors. We use a random
vector Yi to denote student i’s cognitive responses. Due to the matrix sampling
design for cognitive items in international large-scale assessments (ILSAs), the
length of Yi can vary across students. More precisely, we use Bi to denote the
set of cognitive items that student i is assigned. Then Yi = {Yi j : j ∈ Bi}.
For simplicity, we assume all the items are binary, i.e., Yi j ∈ {0,1}. In addi-
tion, consider p predictors collected via non-cognitive survey questions. Let
Zi = (Zi1, . . . ,Zip)⊤ denote the complete predictor vector for student i. Often,
there are missing values in Zi. Let Ai denote the set of observed predictors for
student i, and let Zobs

i = {Zi j : j ∈ Ai} and Zmis
i = {Zi j : j /∈ Ai}. The predictors
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are of mixed types. Here, binary, categorical (ordinal/nominal), and continu-
ous predictors are considered. Note that an ordinal variable will be treated as
a nominal one here for simplicity. In what follows, we introduce a latent re-
gression model, which can be decomposed into (1) a measurement model, (2)
a structural model and (3) a predictor model.

Measurement model. We introduce a latent variable θi as the latent con-
struct, which is measured by the cognitive items. The measurement model is
an IRT model that specifies the conditional distribution of Yi given θi. More
specifically, this model assumes local independence, an assumption that is
commonly adopted in IRT models (Embretson & Reise, 2000). That is, Yi j,
j ∈ Bi, are conditionally independent given θi. For a dichotomous item j, the
conditional distribution of Yi j given θi is assumed to follow a two-parameter
logistic model (2PL, Birnbaum, 1968). That is,

P(Yi j = 1|θi) =
exp(a jθi +b j)

1+ exp(a jθi +b j)
, (1)

where a j and b j are two item-specific parameters. We assume that all the item
parameters are known – they are fixed to be the pre-calibrated values.

Structural model. The structural model regresses the latent construct θi onto
the complete-data predictors Zi1, ..., Zip. A linear regression model is as-
sumed for θi given Zi1, ..., Zip. More specifically, for each variable j, we
introduce a transformation g j(Z j). When Z j is an ordinal variable with cat-
egories {0, ...,Kj}, the transformation function g j creates Kj dummy vari-
ables, i.e., g j(Z j) = (I({Z j = 1}), ...,I({Z j = Kj}))⊤. For continuous and
binary variables, g j is an identity link, i.e., g j(Z j) = Z j. We assume θi|Zi ∼
N(β0 +β⊤

1 g1(Zi1)+ · · ·+β⊤
p gp(Zip),σ2), where β0 is the intercept, β1, ..., βp

are the slope parameters, and σ2 is the residual variance. Note that β j is a
scalar when predictor j is continuous or binary and is a vector when the pre-
dictor is ordinal. Here, β0, β1, ..., βp, and σ are unknown and will be estimated
from the model. The main goal of our analysis is to find predictors for which
∥β j∥ ̸= 0.

Predictor model. To handle missing values in Zi js, we impose a joint model
for the predictors. Although different models may be imposed here, we assume
a Second-Order Exponential (SOE) model, under which missing data imputa-
tion and parameter estimation can be carried out in a computationally efficient
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way. More precisely, we let (θi,Zi) be i.i.d., following an SOE model. Under
this model, the conditional distribution of θi given Zi is the linear regression
model in the above structural model. The conditional distribution of Zi j given
(θi,Zi,− j) takes the following forms:

• A linear regression model (with normal residual), if variable j is contin-
uous;

• A logistic regression model, if variable j is binary;
• A multinomial logistic regression model if variable j is categorical.

These conditional distributions will be used later for missing data impu-
tation and parameter estimation. We remark that except for the parameters of
the structural model, the rest of the parameters in the SOE can be viewed as
nuisance parameters, as they are not of interest to us. The predictor model and
these nuisance parameters are introduced to handle the missing values in the
predictors.

2 Estimation and Variable Selection

The model introduced in the previous section implies a joint distribution of
complete data, which further implies the distribution of observed data under
the Missing At Random (MAR) assumption. We estimate the model and con-
duct variable selection based on this implied distribution for observed data.
More specifically, we estimate the model parameters using an iterative impu-
tation algorithm. According to Liu et al. , 2014, the estimate produced by
this algorithm is asymptotically equivalent to a full Bayesian posterior-mean
estimator based on the observed data likelihood. Thanks to the connection be-
tween the frequentist and Bayesian estimation provided by the Bernstein-von
Mises Theorem (Van der Vaart, 2000, Chapter 10), this estimate also enjoys the
desired frequentist properties, such as consistency and asymptotic normality.

Furthermore, we adopt a data-splitting method for controlled variable se-
lection. More specifically, we combine the data-splitting method (Dai et al. ,
2022) and the iterative imputation method to select the non-null predictors in
the structural model of latent regression. Thanks to the properties of the iter-
ative imputation method, this method has the theoretical guarantee to control
the asymptotically false discovery rate for variable selection. The theoretical
properties of the proposed method are confirmed by simulation results.
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3 Discussions

Traditionally, a PCA-based latent regression model is used for the scaling of
large-scale assessment data, in which the missing values are handled by a miss-
ing indicator approach, and the high dimensionality of the background vari-
ables and their missing indicators is reduced by Principal Component Analysis
(PCA). However, this approach has three drawbacks: (1) the missing indica-
tor approach does not perform well under certain data missingness patterns,
(2) PCA may introduce spurious dependence between the achievement traits
and background variables, and (3) the resulting model lacks interpretability
due to the involvement of hard-to-interpret principal component scores. The
proposed method does not suffer from these issues. It handles missing values
more properly using iterative imputation. Furthermore, the FDR-controlled
variable selection result is more interpretable and better characterises the rela-
tionship between the achievement traits and the background variables. Thus,
this approach may be more suitable than the PCA-based approach in practice
for scaling large-scale assessment data.
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ABSTRACT: An approach for clustering three-way data is discussed. The approach,
which is based on mixtures of matrix-variate distributions, uses an iterative subset
log-likelihood approach to detect and trim outliers.
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1 Introduction

Grubbs (1969) describes an outlier as an observation “that appears to deviate
markedly from other members of the sample in which it occurs.” Outliers,
and their treatment, is a long-studied topic in the field of applied statistics.
The problem of handling outliers in multivariate clustering has been studied
in several contexts including work by Garcı́a-Escudero et al. (2008), Punzo
& McNicholas (2016), Punzo et al. (2020), and Clark & McNicholas (2023).
The approach of Clark & McNicholas (2023) is extended to the matrix-variate
paradigm, i.e., to account for three-way data such as multivariate longitudinal
data. The OCLUST algorithm introduced in Clark & McNicholas (2023), and
supported by the R package oclust (Clark & McNicholas, 2022), is based on
the mixture model-based clustering framework (see, e.g., McNicholas, 2016)
and uses an iterative subset log-likelihood approach to detect and trim outliers.
An analogue of the OCLUST algorithm is developed for three-way data.

2 Background

The density of a finite mixture model is f (x | ϑϑϑ) = ∑G
g=1 πg fg(x | θθθg), where

ϑϑϑ= {π1, . . . ,πG,θθθ1, . . .θθθG}, πg > 0 is the gth mixing proportion with ∑G
g=1 πg =

1, and fg(x | θθθg) is the gth component density with parameters θθθg. Most (mix-
ture) model-based clustering methods assume, either explicitly or implicitly,
that the data are free of outliers. Outlier algorithms in (multivariate) model-
based clustering usually fall into either one of two paradigms: outlier-inclusion
and outlier trimming. Focusing on the latter, Cuesta-Albertos et al. (1997)
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developed an impartial trimming approach for k-means clustering; however,
this method maintains the drawbacks of k-means clustering, where the clusters
are spherical with equal — or, in practice, similar — radii. Garcı́a-Escudero
et al. (2008) improved upon trimmed k-means with the TCLUST algorithm.
TCLUST places a restriction on the eigenvalue ratio of the covariance matrix,
as well as implementing a weight on the clusters, allowing for clusters of var-
ious elliptical shapes and sizes. An obvious challenge with these methods is
that the eigenvalue ratio must also be known a priori. There exists an estima-
tion scheme for the proportion of outliers but it is heavily influenced by the
choices for number of clusters and eigenvalue ratio.

The OCLUST algorithm (Clark & McNicholas, 2023) uses the fact that
the Mahalanobis distance is χ2

p for p-dimensional multivariate normal data
(Mardia et al., 1979) to derive the distribution of subset log-likelihoods for
clustering multivariate normal data. A subset log-likelihood is considered to
be the log-likelihood of a model fitted with n−1 of the data points. There are
n such subsets. The OCLUST algorithm uses the subset log-likelihoods and
their distribution to identify and trim outliers.

Two-way data can be regarded as the observation of n vectors, whereas
three-way data can be considered the observation of n matrices. Mixtures of
matrix-variate distributions have been used to cluster three-way data (e.g., Vi-
roli, 2011; Anderlucci & Viroli, 2015; Gallaugher & McNicholas, 2018). An
r× c random matrix X comes from a matrix-variate normal distribution if its
density is of the form

φr×c(XXX | MMM,VVV ,UUU)=
1

(2π) rc
2 |VVV | r

2 |UUU | c
2

exp
{
−1

2
tr
(
VVV−1(XXX −MMM)⊤UUU−1(XXX −MMM)

)}
,

(1)
where MMM is the r×c mean matrix, UUU is the r× r row covariance matrix, and VVV
is the c×c column covariance matrix. Note that there is an identifiability issue
with regard to the parameters UUU and VVV , i.e., if k is a strictly positive constant,
then replacing UUU and VVV by (1/k)UUU and kVVV , respectively, leaves (1) unchanged.
Various different solutions have been proposed to resolve this issue, including
setting tr(UUU) = r or UUU11 = 1.

For multivariate normal data, the Mahalanobis distance can be expressed
as D(xi,µµµ,ΣΣΣ) = (xi −µµµ)⊤ ΣΣΣ−1 (xi −µµµ). Pocuca et al. (2023) derive a similar
expression for matrix-variate normal data:

DM(XXXi,MMM,VVV ,UUU) = tr
{

UUU−1(XXXi −MMM)VVV−1(XXXi −MMM)⊤
}
, (2)
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and prove that if a Kronecker product structure exists for ΣΣΣ, then

DM(XXXi,M̂MM,ÛUU ,V̂VV )
P−→ DM(XXXi,MMM,UUU ,VVV ), (3)

where P−→ denotes convergence in probability.

3 Methodology

As in the multivariate case, consider a subset log-likelihood in the matrix-
variate case to be the log-likelihood of a model fitted with n− 1 of the data
points. Formally, if we denote our complete dataset as X = {XXX1, . . . ,XXXn}, then
the jth subset is defined as the complete dataset with the jth point removed,
i.e., X \XXX j = {XXX , . . . ,XXX j−1,XXX j+1, . . . ,XXXn}. Analogous to the multivariate case,
treat point XXXk, whose absence produced the largest subset log-likelihood, as
our candidate outlier, ie.

Definition 1 (Candidate Outlier). We define our candidate outlier as XXXk, where

k = arg max
j∈[1,n]

ℓX \XXX j ,

and ℓX \XXX j is the log-likelihood of the subset model with the jth point removed.

Remove candidate outliers one-by-one until we obtain our best model,
which is determined by the distribution of our subset log-likelihoods, stated
in Proposition 1.

Proposition 1. For a point XXX j belonging to the hth cluster, if QX is a simpli-
fied log-likelihood and Yj = QX \XXX j −QX , then Yj has an approximate shifted
gamma density

Yj ∼ fgamma

(
y j − k

∣∣∣∣ α =
p
2
,1
)
, (4)

for y j − k ≥ 0,α > 0, where

k =− logπh +
rc
2

log(2π)+ c
2

log|UUUh|+
r
2

log|VVV h|,

nh is the number of points in cluster h, and πh = nh/n.

The mathematical results for this proposition will be given in the full paper,
along with other technical details as well as illustrations via real and simulated
data.
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ABSTRACT: The proposed approach addresses the issue of response styles in longi-
tudinal ordered categorical data, where respondents tend to endorse certain options on
a Likert scale regardless of the item’s content. These response styles, including mid-
dle, extremes, acquiescence, and disacquiescence, can introduce bias in the results. To
tackle this, the approach uses a Markov switching logit model with two latent com-
ponents. One component captures serial dependence and respondent’s unobserved
heterogeneity, while the other accommodates the responding attitude (RS or no-RS).
The responses’ dependence on covariates is modeled using a flexible stereotype logit
model with parameters varying based on the two latent components.

KEYWORDS: Latent variables; Response styles; Stereotype logit models.

Motivation and Models

Longitudinal ordered categorical data is susceptible to response styles, where
respondents, when asked to assess items using Likert scales at various time
points, tend to consistently select only a few specific options on the rating
scale, regardless of the item’s actual content.

Numerous studies in psychometrics and statistics have explored different
types of response styles (RS) and their consequences (Van Vaerenbergh &
Thomas, 2013). The commonly recognized response styles include acquies-
cence, disacquiescence, extreme and middle RS as described in Baumgartner
& Steenkamp, 2001, among many others.

*The author Sabrina Giordano received partial financial support by MUR, grant number
2022XRHT8R - The SMILE project and by COST Action CA19130 Fintech and Artificial
Intelligence in Finance - Towards a transparent financial industry (FinAI), funded by COST
(European Cooperation in Science and Technology).
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Ignoring the RS mechanism can introduce response heterogeneity, biases
the estimated model parameters, and consequently leads to inaccurate results
(e.g., Colombi et al., 2021).

In this study, our goal is to account for the temporal evolution of the RS be-
havior, which contrasts with previous approaches that either ignore it or model
it as a time-invariant latent trait or random effect (Billiet & Davidov, 2008;
Schauberger & Tutz, 2022).

Recognizing the significance of RS and its temporal dynamics, we propose
a Markov switching model (Fruhwirth Schnatter, 2001) driven by a bivariate
latent Markov chain. One component of this chain has k states or regimes,
known as the k-regime switching indicator, which captures serial dependence
and respondent heterogeneity due to unobserved covariates. The other bi-
nary component, called the response style regime switching indicator, dictates
whether respondents answer according to an RS or use the rating scale appro-
priately to accurately represent their feelings.

Given the k-regime switching indicator, the observed categorical responses’
dependence on time-varying and subject-specific covariates under the no-RS
regime is modeled using a stereotype logit model (Anderson, 1984), while
under the RS regime, it is modeled using a parallel local logit model with re-
stricted intercepts, accommodating the tendency of respondents to select cate-
gories due to RS.

This approach adds a contribution to the literature on multivariate Markov
chains in the context of Markov switching models (e.g., Pohle et al., 2021,
among others). The novelty of our approach, which extends existing models
for longitudinal categorical data (e.g., Bartolucci et al., 2012), lies in provid-
ing a Markov switching regression model for ordered responses that simulta-
neously considers attitude towards response styles, unobserved heterogeneity,
serial dependence, and the impact of time-varying covariates.

The fundamental assumption in our current approach is that transition prob-
abilities remain identical across subjects, as unit-specific covariate effects are
accounted for at the observation level. However, an alternative scenario has
been explored by Colombi et al., 2023, where a non-homogeneous latent pro-
cess is considered. In this case, the initial probabilities can be influenced by
time-invariant regressors, while the transition probabilities by time-specific co-
variates. This approach considers the restriction of subject and time-invariant
observation probability functions. In the mentioned paper, the observed vari-
ables are treated as indicators of a latent construct of interest, allowing co-
variates to naturally affect only the latent component of the model. The pri-
mary focus in the proposed work is centered on logit regression models fea-
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turing time-varying parameters for the observable variables, with the k-regime
switching indicator serving as a tool to model both unit heterogeneity and time
dependence arising from unobserved covariates. For a deeper comprehension
of the proposed model and real-world applications, refer to Colombi & Gior-
dano, 2023’s work, which provides extensive details on both aspects.

Our approach has potential applications in various longitudinal surveys
that collect opinions on health status, risk of illness, economic difficulties,
the impact of climatic events, discriminatory and racist beliefs, and political
attitudes. These surveys may reveal biased perceptions due to response styles
that vary over time, reflecting the ever-changing nature of human behavior.
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ABSTRACT: SWIM is a recently developed network-based tool that fulfils the criteria
of the new quickly emerging field of Network Medicine in finding disease-associated
genes, called switch genes. Here, a brief summary of the promising results obtained
by applying SWIM in different biological contexts is presented.
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1 Introduction

Recently, we developed a new promising methodology, called SWIM (SWItch
Miner), which integrates different network-based methods to analyse the corre-
lation network arising from large-scale gene expression data Paci et al., 2017.
Considering the topological properties of the nodes and assessing their func-
tional roles according to their ability to convey information within and between
modules in the network, SWIM identifies a small pool of genes (called switch
genes) that are associated with intriguing patterns of molecular co-abundance
and play a crucial role in the observed phenotype.

The phenotype-specific applications of SWIM are broad and include the
identification of switch genes in grapevine berry maturation Palumbo et al.,
2014, in human cancers Paci et al., 2017, including glioblastoma multiforme
(GBM) Fiscon et al., 2018 and in chronic obstructive pulmonary disease (COPD)
Paci et al., 2020. More recently, SWIM has been applied within the framework
of Network Medicine to study the interplay between switch genes and human
diseases in the human interactome (i.e., the cellular network of all physical
molecular interactions) Paci et al., 2021.

In the following, a detailed description of the more recent applications of
SWIM to complex diseases is provided.
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2 Methods

SWIM is a freely downloadable network-based tool, developed both in MAT-
LAB Paci et al., 2017 and in R language Paci & Fiscon, 2022, which predicts
important (switch) genes that are strongly associated with drastic changes in
cell phenotype. SWIM encompasses several steps detailed in Paci et al., 2017.

3 Results and Discussions

3.1 Glioblastoma

Glioblastoma is the most aggressive and frequent brain tumour, with a median
survival time of 12–15 months from diagnosis Young et al., 2015. This tumour
is resistant to the standard therapies and its aggressiveness seems to be due to
the presence of cancer stem-like cells Gimple et al., 2019. Thus, targeting
cancer stem-like cells could pave the way for new therapeutic strategies.

A recent study identified 19 neurodevelopmental transcription factors (TFs)
that are selectively expressed in glioblastoma stem-like cells to maintain their
stem-like phenotype and prevent differentiation Suva et al., 2014. A subset of
only four of them (named 4-core TFs), SOX2, OLIG2, POU3F2, and SALL2,
has been shown to be sufficient to fully reprogram differentiated cells into
glioblastoma stem-like cells Suva et al., 2014.

In order to identify switch genes related to the stem-like phenotype, SWIM
was applied to GBM dataset of Suva et al., 2014 and then the further dataset of
Schulte et al., 2011 was used to validate the results Fiscon et al., 2018. Among
the common switch genes obtained by running SWIM on the these two GBM
datasets, there is FOSL1. It is up-regulated in differentiated glioblastoma cells
and this up-regulation highly correlates with the over-expression of genes in-
volved in cell-cell communications. It is down-regulated in stem-like cells
and this down-regulation highly correlates with the up-regulation of the 4-core
of TFs. To investigate a possible co-regulation of the 4-core of TFs, their
promoter regions were inspected to search for enriched motifs and they were
found to harbour a consensus binding site for FOSL1.

Altogether these findings suggest FOSL1 as possible therapeutic biomarker
of glioblastoma, which could promote the differentiation of cancer stem-like
cells by repressing the 4-core TFs. This hypothesis has been partially experi-
mentally validated in Pecce et al., 2021.
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3.2 COPD

COPD is a heterogeneous and complex syndrome influenced by both genetic
and environmental determinants, and is one of the main causes of morbidity
and mortality worldwide.

By applying SWIM on COPD Paci et al., 2020, the correlation network
turned out to be formed by three well-characterised modules: i) one popu-
lated by switch genes, all up-regulated in COPD cases and involved in COPD-
related pathways, like B cell receptor signalling pathway; ii) one populated
by negative interactors of switch genes, down-regulated in COPD cases, in-
cluding well-known GWAS genes like AGER and CAVIN1; iii) one popu-
lated by well-recognised immune signature genes, all up-regulated in COPD
cases. Switch genes appear to form localised connected subnetworks display-
ing an intriguingly common pattern of up-regulation in COPD cases compared
with controls. A more sophisticated analysis revealed that they were not only
topologically related, but also functionally relevant to the observed phenotype
as witnessed by their enrichment in the regulation of inflammatory and im-
mune responses. Finally, SWIM was applied on another severe lung disease
with an inflammatory component, i.e., the acute respiratory distress syndrome
(ARDS), demonstrating that, even though different diseases can share similar
endophenotypes, the molecular network determinants responsible for them are
disease-specific.

3.3 Network Medicine

Network Medicine is a new emerging paradigm in medicine, where disease
proteins are assumed not to be randomly scattered, but agglomerate in specific
regions of the molecular interactome, suggesting the existence of specific dis-
ease network modules for each disease Barabási et al., 2011. To quantify the
interplay between switch genes and human diseases in the human interactome,
the results obtained by the pan-cancer Paci et al., 2017 and COPD Paci et al.,
2020 SWIM-based analysis were complemented with the application of SWIM
tool on two cardiac disorders (i.e., ischemic and non-ischemic cardiomyopa-
thy) and on Alzheimer’s disease (AD) Paci et al., 2021. Switch genes associ-
ated with specific disorders were found to be not randomly scattered but they
form localised connected subnetworks. These subnetworks overlap between
similar diseases (like cancers or cardiac disorders) and are situated in different
neighbourhoods for pathologically distinct phenotypes (like AD and COPD),
showing a direct relation between the pathobiological similarity of diseases
and their relative distance in the human interactome. Finally, the first SWIM-
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informed Human Disease Network was built, where nodes correspond to dis-
tinct disorders and a link occurs between two diseases if they share a substan-
tial number of switch genes. Clustering of nodes belonging to the same disease
class means that similar pathophenotypes have a higher probability of sharing
switch genes than do pathophenotypes that belong to different disease classes.
These findings support the hypothesis that SWIM-based correlation network,
when integrated with an interactome-based network analysis, not only identi-
fies novel candidate disease genes, but also may offer useful tool by which to
elucidate the molecular underpinnings of human disease and reveal common-
alities between seemingly unrelated diseases.

References
BARABÁSI, ALBERT-LÁSZLÓ, GULBAHCE, NATALI, & LOSCALZO, JOSEPH. 2011. Network medicine:

a network-based approach to human disease. Nature Reviews. Genetics, 12(1), 56–68.
FISCON, GIULIA, CONTE, FEDERICA, LICURSI, VALERIO, NASI, SERGIO, & PACI, PAOLA. 2018. Com-

putational identification of specific genes for glioblastoma stem-like cells identity. Scientific Reports,
8(1), 7769.

GIMPLE, RYAN C., BHARGAVA, SHRUTI, DIXIT, DEOBRAT, & RICH, JEREMY N. 2019. Glioblastoma
stem cells: lessons from the tumor hierarchy in a lethal cancer. Genes & Development, 33(11-12),
591–609.

PACI, PAOLA, & FISCON, GIULIA. 2022. SWIMmeR: an R-based software to unveiling crucial nodes in
complex biological networks. Bioinformatics, 38(2), 586–588.

PACI, PAOLA, COLOMBO, TERESA, FISCON, GIULIA, GURTNER, AYMONE, PAVESI, GIULIO, & FA-
RINA, LORENZO. 2017. SWIM: a computational tool to unveiling crucial nodes in complex biolog-
ical networks. Scientific Reports, 7(Mar.), srep44797.

PACI, PAOLA, FISCON, GIULIA, CONTE, FEDERICA, LICURSI, VALERIO, & OTHERS. 2020. Integrated
transcriptomic correlation network analysis identifies COPD molecular determinants. Scientific Re-
ports, 10(1), 1–18. Number: 1 Publisher: Nature Publishing Group.

PACI, PAOLA, FISCON, GIULIA, CONTE, FEDERICA, WANG, RUI-SHENG, FARINA, LORENZO, &
LOSCALZO, JOSEPH. 2021. Gene co-expression in the interactome: moving from correlation to-
ward causation via an integrated approach to disease module discovery. npj Systems Biology and
Applications, 7(1), 1–11. Number: 1 Publisher: Nature Publishing Group.

PALUMBO, MARIA CONCETTA, ZENONI, SARA, FASOLI, MARIANNA, MASSONNET, MÉLANIE, FA-
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ABSTRACT: In this work, we extend a recent statistical test for graph clusterability to
directed graphs. Graph clustering, or network community detection, is a pivotal topic
in network science. It consists of labeling nodes so they form subsets that display
a greater similarity to each other than to the remaining vertices on the graph. Here,
node similarity is measured in connection probability or edge density. Similar nodes
have a greater connection probability to each other than to other vertices. However,
not all graph have a clustered structure. While the goal of graph clustering is to offer
a meaningful summary of a graph through vertex clusters, not all graphs can be sum-
marized in this way. In cases where a graph is not clusterable, clustering is not only a
waste of time, it inevitably leads to misleading conclusions. We tailor a statistical test
developed for undirected networks to directed ones. The test is based on measuring
the heterogeneity of local densities. It does not assume any particular graph genera-
tive model or edge probability distribution. The test only rests on the hypothesis that
a clusterable graph must display a mean local (induced subgraph) density that is sig-
nificantly greater than the graph’s overall density. We posit that this inequality is a
necessary (but not sufficient) condition for a graph to have a clustered structure. After
highlighting the probabilistic nature of local and global densities, we offer a statistical
test to assess the significance of this inequality in densities. This test is also based on
sampling node neighborhoods and is thus well suited to very large data sets. We have
validated our test on several synthetic graph structures and real world networks. We
have also compared our test to other recent statistical tests. Our findings show that our
test is more responsive to networks structure than its alternatives.

KEYWORDS: Clustering global densities local densities networks
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ABSTRACT: We propose techniques for estimating a regression function when the
predictor is circular. A case study on Carbon monoxide pollution is presented.
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1 Introduction

We propose a nonparametric regression estimator that is consistent in the pres-
ence of measurement error when predictor data are circular. Following the
approach of Carroll & Hall, 1988 and Carroll et al., 1995, we introduce a
deconvolution-type estimator.

Some facts on the characteristic functions are worth to be recalled. The
characteristic function of a circular random variable Θ, denoted as ϕΘ(ℓ) =
αℓ+ iβℓ satisfies ϕΘ(ℓ) = ϕΘ+2π(ℓ),ℓ ∈ , being zero elsewhere. Moreover,
αℓ = E[cos(ℓΘ)] and βℓ = E[sin(ℓΘ)], both are the coefficients in the Fourier
series representation of fΘ, and correspond to the ℓth trigonometric moment of
Θ. Finally, βℓ = 0 when fΘ is symmetric. If fΘ is square integrable on [0,2π),
one can represent fΘ(θ), θ ∈ [0,2π), as

1
2π

∞

∑
ℓ=−∞

ϕΘ(ℓ)exp(−iℓθ) = 1
2π

{
1+2

∞

∑
ℓ=1

(αℓ cos(ℓθ)+βℓ sin(ℓθ))

}
. (1)

Our estimator is described in Section 2. In Section 3, we model the carbon
monoxide propagation due to wind direction in a region near Huston (Texas).

2 Model and estimator

We consider the case of a circular predictor and linear response. Given the ran-
dom sample (Ψ1,Y1), . . . ,(Ψn,Yn), assume the regression model Yi = m(Ψi)+
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σ(Ψi)ei, but it is available the sample (Φ1,Y1), . . . ,(Φn,Yn), modelled accord-
ing Φ = (Ψ+ ε)mod(2π). Here we have that

• the eis are i.i.d. real-random variables with zero mean and unit variance,
and σ2(·) is the conditional variance of Y ;

• the Ψis are independent copies of the circular latent variable Ψ with den-
sity function fΨ;

• the εis are i.i.d. circular random variables independent of the (Ψi,ei)’s,
with a known density function fε which is symmetric around zero.

We assume that fε, fΨ and fΦ are square integrable, and fε is a circular density
allowing an absolutely convergent Fourier series representation.

A local estimator for m at ψ ∈ [0,2π), denoted by m̃(ψ;κ), can be obtained
by employing a circular deconvolution kernel. Using the inversion formula
(1), and considering that for a symmetric function βℓ = 0 for any ℓ, we have

K̃κ(φ) =
1

2π

{
1+2

∞

∑
ℓ=1

γℓ(κ)
λℓ(κε)

cos(ℓφ)

}
, (2)

with smoothing parameter κ > 0, where γℓ(κ) and λℓ(κε), for ℓ ∈ , respec-
tively are the ℓth Fourier coefficient of the periodic weight function Kκ and the
error density fε whose concentration is κε. The estimator is well defined when
the error density has nonvanishing Fourier coefficients, γℓ(κ) is not identically
zero and ∑∞

ℓ=1 | γℓ(κ)/λℓ(κε) |< ∞ for all (κ,κε) ∈ 2
+, which, in turn, imply

that both Kκ and K̃κ are square integrable functions.
The local constant estimator for m is defined by

m̃(ψ;κ) = ∑n
i=1 K̃κ(Φi −ψ)Yi

∑n
i=1 K̃κ(Φi −ψ)

, (3)

where K̃κ is a circular deconvolution kernel.

Theorem 1. Given the [0,2π)× -valued random sample (Ψ1,Y1), . . . ,(Ψn,Yn),
consider the local constant estimator. If

i) Kκ is a second sin-order kernel admitting a convergent Fourier series
representation 1/(2π){1+2∑∞

ℓ=1 γℓ(κ)cos(ℓθ)}, with κ increasing with
n in such a way that, for ℓ ∈ +,
limn→∞

1−γℓ(κ)
1−γ2(κ) =

ℓ2

4 ,

limn→∞ γℓ(κ) = 1 and limn→∞
1
n ∑∞

ℓ=1 γ2
ℓ(κ) = 0,



130

ii) the second derivative of the regression function m is continuous,
iii) the conditional variance σ2 is continuous, and the density fΨ is continu-

ously differentiable,

then

E[m̂(ψ;κ)]−m(ψ) = (1− γ2(κ))
4

{
m′′(ψ)+

2m′(ψ) f ′Ψ(ψ)
fΨ(ψ)

}
+o(1− γ2(κ)),

Var[m̂(ψ;κ)] =
(
1+2∑∞

ℓ=1 γ2
ℓ(κ)

)

2πn fΨ(ψ)
σ2(ψ)+o

(
∑∞
ℓ=1 γ2

ℓ(κ)
n

)
.

We notice that, as in the Euclidean setting, the measurement error has no
effect on the asymptotic bias of the estimator, which, when the predictor ob-
served with error is circular (linear respectively), depends only on the sec-
ond moment of the classical kernel Kκ (Kh resp.). The asymptotic variance,
similarly to the Euclidean setting, depends on the Fourier coefficients (char-
acteristic function resp.) of the error density appearing in roughness of the
deconvolution kernel K̃κ (K̃h resp.).

3 Pollution and surface wind data

Usually, air pollution in a region strongly depends on wind direction. We con-
sider data from the Texas Commission on Environmental Quality, where the re-
sponse variable is the amount of carbon monoxide (CO) while the explanatory
variable is the wind direction. We have selected a site near Houston (“North
Loop”) in Harris County at Latitude: 29.81o North and Longitude: −95.39o

West using data from 2018*. The data are collected hourly, but we have calcu-
lated the average daily wind direction (using the directional average), and the
average daily CO (in parts per million). These daily averages were “thinned”
to reduce serial correlation resulting in 183 observations from alternate days.
We initially fit a parametric model in which CO (y) is related to wind direction
(φ) using a sine-cosine model Yi = β0 + β1 sinΦi + β2 cosΦi + ei. This gives
fitted values β̂0 = 0.568, β̂1 = −0.173, β̂2 = 0.074. The CO pollution is high-
est when the wind is coming from the south (2.73 radians). Then, we fit a
standard circular-linear nonparametric regression, in which the measurements
are treated as error free. The smoothing parameter (chosen by leave-one-out

*https://www.tceq.texas.gov/
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cross-validation) was selected as κ = 7.77 for a von Mises kernel. For this
model, the maximum CO occurs at 2.11 radians.

Finally, in this circular-linear case, we use a error-in-variables model for
the observed wind direction which can be approximated by a wrapped Normal
error with zero mean and concentration equal to 0.9. The estimated CO is
then given using equation (3), in which κ was found by leave-one-out cross-
validation to be 3.35. The three curves, depicted in Figure 1, show that, in
the last case, the curve appears to be somewhat less smooth than the error-
free model estimate. The nonparametric errors-in-variables model has residual
sum of squares equal to 1.91, whereas the parametric model is slightly larger
(2.40) and the error-free model very similar (1.99). The maximum estimated
CO occurs at φ = 2.17 for the errors-in-variables model.
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Figure 1. Carbon monoxide vs wind direction at Houston North Loop monitoring sta-
tion — alternate daily averages for 2018. Parametric sin/cos model (red), fitted non-
parametric errors in variables model (black) and standard circular-linear (no error
model) kernel regression (dashed).
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ABSTRACT: Emotional intelligence is a key factor for success in sporting competi-
tions, arousing great interest in the psychological assessment of athletes. When the
evaluation relies on Likert-type psychometric scales, individuals could tend to re-
spond to items regardless of their content, compromising the measurement process.
In this vein, the present contribution aims to address measurement issues regarding
uncertainty and response style during the assessment of emotional intelligence of elite
swimmers by exploiting latent trait models. Results provide evidence in favor of mod-
els accounting for response behavior.

KEYWORDS: Elite swimmers, emotional intelligence, latent trait models, re-
sponse style, uncertainty

1 Introduction

Data concerning athletes’ performance and their behavior are the essential core
for competitive sports. Recently, an increasing interest has been devoted to un-
derstanding the psychological behaviour of some athletes and how personality
traits influence their performance. Among them, emotional intelligence (EI)
stands out, affecting athletes’ ability to properly perceive and manage their
emotions during competitions and thus allowing them to perform at their best.

From a modeling point of view, EI can be conceived as a personal la-
tent trait that can be measured through a set of manifest indicators, such as
multi-item psychometric scales. Therefore, latent variable models represent a
relevant statistical framework to detect the underlying latent trait. When cat-
egorical observed variables are considered (as for Likert-type measurement
scales), item response theory (IRT) models are the main reference (Bartolucci
et al., 2015). In particular, the Partial Credit model (PCM) is considered for the
current application among the IRT models developed for polytomous items.
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Nevertheless, it should be noted that individual responses to items could
be affected by factors unrelated to the measured latent trait, especially when
dealing with sensitive issues. For example, some works (e.g., Tutz et al., 2018)
highlighted different response styles during response behavior, including a ten-
dency to select middle or extreme categories, irrespective of item content, and
random answers. Other studies (e.g., Tutz & Schauberger, 2020) focused in-
stead on response behavior driven by different degrees of uncertainty in choos-
ing the preferred category. It is demonstrated that ignoring such subject het-
erogeneity may yield biased estimates of model parameters.

Herein, latent trait models that extend the PCM to account for athletes’
uncertainty and response styles when responding to Likert-type scales mea-
suring EI are analysed. In particular, the PCM Response style (PCMRS) and
the Uncertainty PCM (UPCMRS) are considered. Moreover, uncertainty and
the underlying trait are linked to explanatory variables concerning age, gender,
and Big Five personality traits.

2 PCM with response style and uncertainty

The PCM represents the generalization of the Rasch model in the context of
ordinal data. Let Yi j ∈ {0,1,2, . . . ,m} be the response on a Likert scale of
individual i to an item j ( j ∈ {1,2, . . . ,J}). The probability of observing a
response category r can be parametrized, according to the PCM, as:

P(Yi j = r) =
exp

(
∑r

l=1(θi −δ jl)
)

∑m
s=0 exp

(
∑s

l=1(θi −δ jl)
) , r = 1, . . . ,m, (1)

where θi is the person parameter and δ jl the item-step difficulty parameter.
The extended PCM with response style (PCMRS; Tutz et al., 2018) modi-

fies the item-step difficulty parameter δ jl to model the tendency to extreme or
middle categories. In particular, the new difficulty parameter δ̃ jl has the form:

δ̃ jl = δ jl − (k− l + c)γi, (2)

where γi is an additional person parameter accounting for the shifting of thresh-
olds, k = m/2 denotes the middle category of the response scale, and c deter-
mines the centering of the response style. For c= 0.5 there is symmetry around
the middle category, ensuring a local Rasch model for adjacent categories. Re-
garding the person parameter γi, positive and negative values indicate a ten-
dency to middle or extreme categories, respectively.
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In the extended version of PCM accounting for uncertainty (UPCM; Tutz
& Schauberger, 2020), the new predictor ηi jr = eαi(θi − δ jl) is introduced,
which contains the additional subject-specific parameter αi. The added param-
eter discriminates between uncertain or non-uncertain respondents, consider-
ing eαi the uncertainty effect. In particular, for ordered thresholds δ jr ≤ δ j,r+1,
it follows that: (i) if αi = 0, the classic PCM is obtained; (ii) for decreas-
ing values of αi, one comes closer to a uniform distribution across categories,
whatever the parameter θi is (random responding); (iii) for increasing αi, the
selection for categories becomes very distinct depending on the value of θi.

3 Elite swimmers’ response behavior during EI assessment

In this contribution, a practical definition of EI validated for sports was consid-
ered, whose assessment relays on 30 items with a 7-point Likert response scale
(from “strongly disagree” to “strongly agree”) measuring the four dimensions
of well-being, sociability, emotionality, and self-control (Petrides, 2009). In
what follows, only the results for the emotionality subscale are presented.

The study involved n = 205 elite swimmers enrolled in the Italian Swim-
ming Federation, predominantly males (61%) with a mean age of 16.8 (sd =
3.6). In addition to EI, the Big Five personality traits (Extraversion, Emotional
stability, Openness, Agreeableness, and Conscientiousness) were assessed.

A simple PCM and the extended version of PCMRS and UPCM were fitted
to the data. The variance of the random effect for the trait parameters in the
PCM was estimated to be σ2 = 0.07. When fitting the PCMRS and UPCM
without covariates the following covariance matrices resulted:

Σ̂PCMRS =

(
0.06 0.04
0.04 0.16

)
, Σ̂UPCM =

(
0.04 0.03
0.03 0.87

)
.

The latter report the estimate for the variance of the trait and response style (or
uncertainty) effects on the main diagonal and their covariance out of the diag-
onal. Figure 1 displays the estimates of the item parameters for simple PCM,
extended PCMRS, and UPCM. It can be seen that for all items the estimates
of item thresholds differ between the considered models, especially the ex-
treme responses. BIC indexes (6110, 5459, and 5607 for PCM, PCMRS, and
UPCM, respectively) support the selection of the model with the response style
component, followed by the model accounting for individual uncertainty. Re-
garding the UPCM model with covariates, results reported a significant effect
(p-value< 0.05) of Agreeableness on uncertainty (β= 0.23) and EI (β= 0.09),
and a significant effect of Conscientiousness on uncertainty (β =−0.28).
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4 Conclusion

The study provides some evidence regarding the fffect of response style and
uncertainty in the assessment of the EI of swimmers. Improving the accuracy
of parameter estimation by exploiting sophisticated statistical models, as those
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of parameter estimation by exploiting sophisticated statistical models, as those
herein employed, allows for disentangling the latent trait component and the
response vvior. Moreover, accounting for the fffect of covariates makes it
possible to identify subgroups that fffer in uncertainty and the underlying trait
to better promote successful faactors, such as EI, in sports.
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ABSTRACT: Rectangular latent Markov (LM) models have been recently introduced
to account for different numbers of latent states over time. This contribution proposes
a three-step estimation procedure for such models, which proved useful in the LM
modeling framework for flexibility. Specifically, a bias-adjusted maximum likelihood
(ML) estimator is introduced for the third step. A simulation study provided prelimi-
nary encouraging results regarding the efficacy and effectiveness of the method.

KEYWORDS: Rectangular LM models, three-step estimation, ML-based correction

1 Introduction

Latent Markov (LM) models represent a primary reference to study change
over time in the framework of non-parametric latent variable models (Bar-
tolucci et al., 2014). Given a set of response variables repeatedly measured
at different time points, LM models allow analyzing individuals’ transitions
across latent states over time, assuming a first-order Markov chain for the la-
tent process. Three types of parameters characterize LM models: initial state
probabilities, namely state proportion at the first time point; transition proba-
bilities, describing the transition from one state to another at each subsequent
time point; class-conditional parameters accounting for the relation between
latent states and observed indicators. Moreover, the effect of individual covari-
ates on initial and transition probabilities can be considered.

One-step and multi-step approaches have been proposed for model pa-
rameter estimation. Due to their flexibility and high feasibility, step-wise ap-
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proaches are usually preferred in practice. Among them, a bias-adjusted three-
step approach exploiting a maximum likelihood-based (ML) correction was
proposed (Di Mari et al., 2016).

Rectangular LM models have been recently introduced to address the is-
sue of possible different numbers of latent states for the considered time points
(Anderson et al., 2019). Indeed, over time the nature and number of latent
classes tend to vary; therefore, a unique overall definition of the latent classes,
as typical in classical LM models, might result in either too restrictive or re-
dundant. Currently, only a one-step estimation procedure for this model has
been proposed (Anderson et al., 2019). In this vein, the present contribution
aims to further generalize the bias-adjusted three-step approach based on ML
correction to the case of LM models with rectangular transition matrices.

The following section outlines the proposed three-step approach. Section 3
presents the simulation study carried out to obtain a preliminary evaluation of
the developed estimator. Section 4 reports some conclusions.

2 Three-step rectangular LM modeling

Let Y(t)
s = (Y (t)

s1 , . . . ,Y (t)
sKt

)′ be the vector of responses for individual s = 1, . . . ,N
on the Kt indicators measured at time point t = 1, . . . ,T , with a realization
y(t)s . It is worth noting that the set and the number of indicators Kt varies over
time. Denote with X (t)

s the categorical latent variable at time t taking value
i = 1, . . . , It , producing rectangular transition matrices wherever It−1 ̸= It .

In Step 1, the measurement part of the model is estimated for each time
point exploiting a latent class model. This step connects the latent states
i = 1, . . . , It to the response variables Y(t)

s , providing for each individual s and
time t, the posterior class probability P(X (t)

s = i|Y(t)
s = y(t)s ). In Step 2, state

membership W (t)
s is obtained according to the modal assignment rule, namely

allocating individuals in the class for which they present the largest poste-
rior probability. Accordingly, the classification error probabilities included in
the time-specific D(t) matrix are defined as the conditional probability of the
estimated class value conditional on the true one P(W (t)

s = g|X (t)
s = i), with

g, i = 1, . . . , It . In Step 3, a rectangular LM model is estimated with the vector
of class assignments Ws = (W (1)

s , . . . ,W (T )
s ) as single indicators and known er-

ror probabilities included in the D(t) matrices. Keeping out of consideration the
effect of covariates, the third-step log-likelihood is ℓ(η) = ∑N

s=1 log{P(Ws)},
where η is the vector of free model parameters. The probability P(Ws) can be
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expressed for rectangular transition matrices as

P
(
Ws

)
=

I1

∑
i(1)=1

I2

∑
i(2)=1

· · ·
IT

∑
i(T )=1

P
(
X (1)

s = i(1)
) T

∏
t=2

P
(
X (t)

s = i(t)|X (t−1)
s = i(t−1))

T

∏
t=1

P
(
W (t)

s = g(t)|X (t)
s = i(t)

)
,

where the state-dependent distributions (given by classification errors) are con-
sidered fixed parameters, and thus they are not estimated.

A generalization of the Baum–Welch algorithm (Rabiner, 1989) for rectan-
gular LM, which exploits forward and backward probabilities during estima-
tion, was implemented in the ! statistical software. The proposed estimator
allows for both time-varying and time-invariant measurement models.

3 Simulation study for the developed bias-adjusted estimator

A simulation study was carried out to evaluate the performance of the bias-
adjusted maximum likelihood estimator. Different scenarios were considered,
mainly concerning class separation and sample size. In particular, three simple
latent class models (one per time point) with 3-3-2 latent classes were consid-
ered for the measurement part of the model. Class separation was modeled
through response probabilities to ten dichotomously-scored items, setting a
probability of 0.8 and 0.9 for the most likely responses in the case of moderate
and large class separation, respectively. Four sample sizes were considered:
200, 500, 2000, and 10000 observations. Finally, equal size was imposed for
initial probabilities and persistent Markov chains for transition probabilities.
For each condition, 500 replications were carried out. The bias in the model
parameters estimates (initial and transition probabilities) was used to compare
the estimator’s performance under different conditions.

The results support the overall good performance of the proposed third-
step bias-adjusted estimator. The data log-likelihood increases monotonically
according to the number of iterations and the algorithm reaches convergence
within 20 iterations. The variability of the estimated bias distribution for both
initial and transition probabilities becomes smaller as class separation and sam-
ple size increase. Figure 1 shows an example of the estimated bias for the

transition matrix from Time 2 to Time 3, with γti j = log P(X (t)
s =i|X (t−1)

s = j)
P(X (t)

s = j|X (t−1)
s = j)

. Note
that more accuracy for initial probabilities estimates emerged, which reported
an average bias close to 0 in all the considered conditions. Conversely, as the
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figure shows, a small sample size (n = 200) strictly fffects transition probabil-
ities estimation due to the presence of very small probabilities in the transition
matrix cells that can easily end up in an estimate close to the boundary. Of
course, this rarely happens with large samples.

4 Conclusion
A bias-adjusted three-step rectangular LM modeling approach was proposed.
In particular, a new estimator for an ML-based correction was developed for
the third step. The proposed estimator proved to perform well asymptotically,
with a larger estimation bias for small samples and lower class separation. Cur-
rent developments aim at also considering the covariates’ fffect on initial and
transition probabilities. Empirical applications could provide further insights
into the practical advantages of the proposed method.
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ABSTRACT: We propose a novel method for quantile regression for discrete longitu-
dinal data. The approach is based on the notion of conditional mid-quantiles, which
have good theoretical properties even in the presence of ties, and a Ridge-type pe-
nalised framework to accommodate dependent data. We illustrate the methods with a
simulation study and an original application to the use of macroprudential policies in
more than one hundred countries over a period of fifteen years.
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1 Introduction

Quantile Regression (QR) involves modeling effects of predictors at specific
quantiles of an endogenous variable. Most QR methodologies are restricted to
continuous outcomes, with some notable exceptions (Machado & Santos Silva,
2005; Frumento & Salvati, 2021). Recently, Geraci & Farcomeni, 2022 pro-
posed a method based on conditional mid-quantiles (see also Ma et al., 2011).
We extend their approach to the case of discrete panel data. Our approach can
also be seen as an extension to discrete outcomes of the penalised framework
for QR for continuous panel data (Koenker, 2004). We develop a collect of
methods that are based on a two-step algorithm. At the first step, the condi-
tional mid-quantile function is estimated through a semiparametric approach;
at the second step we optimise a possibly penalised objective function to obtain
parameter estimates. We illustrate the methods by means of a simulation study,
and an original application to macroprudential policies in a panel of countries.
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2 Penalized mid-quantile regression

Let yit , t = 1, . . . ,Ti and i = 1, . . . ,n, denote a discrete/ordered outcome and x̃it
an associated vector of covariates. Measurements are repeatedly taken Ti ≥ 1
times for each unit, with Ti > 1 at least for one subject. We define the condi-
tional mid-CDF of Y as GY |X(y|x) = FY |X(y|x)−0.5 ·mY |X(y|x) and GC

Y |X(y|x)
the continuous function that interpolates GY |X(y|x), where FY |X(y|x) = P(Y ≤
y|X = x) and mY |X(y|x) = P(Y = y|X = x). Let p ∈ (0,1). The conditional
mid-quantile function is the generalised inverse HY |X(p) = G−1

Y |X(y|x).
We assume a p-specific model that is linear on the scale of a link function

h(·):
h{ηit(p)}= αi(p)+ x̃T

it β(p) = Hh(Y )|X(p) (1)

Estimation, as in Geraci & Farcomeni, 2022, proceeds in two steps. In the first
step, one obtains estimates of the conditional mid-CDF. Similarly to Peracchi,
2002, we define outcome variables 1{yit ≤ c} at appropriate cut-points. We
then estimate logistic regression models with either (1) fixed subject-specific,
(2) random subject-specific, or (3) homogeneous intercepts. For a fixed penalty
λ > 0, our objective function for the second step is given by

ψn [θ(p); p] =
n

∑
i=1

T

∑
t=1

{
p− Ĝc

Y |X (ηit |x̃it)
}2

+λ
n

∑
i=1

α2
i . (2)

The optimum is available in closed form as a Ridge-type estimator. For se-
lection of the penalty parameter we use an heuristic reasoning as in Ruppert
et al., 2003. As long as mini Ti > 1 it is possible also to set λ = 0; and it is also
possible to set λ → ∞, therefore obtaining homogenenous intercepts αi = α.
In summary we are proposing three possible routes for estimation of the con-
ditional CDF and three possible routes for the second step. The case with
homogeneous intercepts at the first step and λ → ∞ recovers the methodology
in Geraci & Farcomeni, 2022.

3 Simulation study

In Figure 1 we show mean squared error (500 replicates) for regression coef-
ficient estimates for ten alternative model specifications, reported by quantiles
(0.2,0.5,0.8) and two sample sizes. The first nine model specifications in-
volve our proposed class, where at the first step intercepts can be homoge-
nous (HMG), treated as fixed (FE), or random (RE). Each specification is
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Figure 1. Log Mean Squared Error of parameter estimates for a Poisson response with two
continuous covariates.

paired, at the second step, with three different choices for the penalty param-
eter λ → 0,λ → ∞, or λ = λ∗. Finally rqpd denotes the quantile regression
procedure in Koenker, 2004. At the data generation stage we simulate Poisson
responses with two Gaussian covariates. Several other settings are available in
the accompanying paper. The general conclusions that can be drawn are that
(i) our method outperforms rqpd, which does not take into account the discrete
nature of the outcome, and (ii) the MSE decreases at the expected rate.

4 Real data example

Macroprudential policies (MP) (Galati & Moessner, 2013) are used by central
banks to protect macroeconomic performance from the drawbacks of external-
ities, market failures, excessive procyclicality and other factors. They involve
currency instruments, limits to bank exposure, and similar requirements. In
this work our focus is on the determinants of the use of MP. Our endogenous
variable is the number (up to twelve) of different MP used by a country in a
given year. We collect data on a panel of n = 115 countries over T = 18 years
starting from 2001. Predictors include World Bank label for the economy, debt
to gdp ratio, unemployment rate, trade as % of GDP. All covariates are lagged
by one year.

Results for optimal model specification selected through 10-fold cross val-
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Table 1. Macroprudential policy determinants in 115 countries from 2001 to 2017.
Parameter estimates (95% CI in parenthesis) at different quantiles p.

p = 0.2 p = 0.5 p = 0.8 p =
Trade-to-GDP 0.09(0.05,0.12) 0.06(0.03,0.09) 0.06(0.03,0.09) 0.05(0

Unempl. −0.03(−0.06,−0.01) −0.03(−0.05,−0.00) −0.02(−0.04,0.00) −0.02(−
Debt-to-GDP 0.03(0.01,0.05) 0.02(0.00,0.04) 0.02(0.01,0.04) 0.03(0
High income 0.31(0.24,0.37) 0.38(0.32,0.44) 0.31(0.26,0.36) 0.30(0

Up-Mid Income 0.54(0.46,0.61) 0.60(0.53,0.66) 0.47(0.42,0.53) 0.45(0
Low-Mid Income 0.29(0.23,0.35) 0.34(0.29,0.40) 0.28(0.23,0.32) 0.26(0

Time 0.05(0.04,0.05) 0.04(0.04,0.05) 0.04(0.04,0.04) 0.04(0

idation are reported in Table 1. Consistently with the literature upper-middle
income countries tend to use more MP. Effects are quantile-dependent, with
high trade-to-GDP and debt-to-GDP prompting larger use at low quantiles.
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TRIMMED FACTORIAL K-MEANS

Matteo Farnè 1

ABSTRACT: This paper provides the definition of trimmed factorial k-means (TFKM)
algorithm. TFKM is a robust version of factorial k-means, where a robust covariance
matrix input is used, and outliers in the identified reduced space are iteratively re-
moved via a trimming procedure. The selected latent rank, number of clusters and
outlier proportion are those which maximize Hartigan’s statistic.

KEYWORDS: robust clustering, dimension reduction, factorial k-means, trimming

1 Introduction

Clustering high-dimensional data with many objects is a challenging task for
several reasons. First, a high dimension and a large sample size make agglom-
erative hierarchical methods like Ward’s one (Ward, 1963) computationally
intractable. Second, hierarchical partitioning methods like k-means algorithm
(MacQueen, 1967) may become very unstable in high dimensions, due to nu-
merical instability and multicollinearity. Third, any non-robust methodology
applied to a large dataset is likely to be affected by outliers, so that there is the
need to develop and apply robust versions of traditional methods to prevent
the identification of uninformative partitions, like trimmed k-means (TKM)
(Cuesta-Albertos et al. , 1997).

In order to approach dimension reduction, Vichi & Kiers, 2001 proposed
factorial k-means (FKM), a method to identify the latent space most able to
maximize the distinctiveness of projected objects. The strong consistency of
FKM was proved in Terada, 2015. In this paper, we present a robust version of
factorial k-means, named trimmed factorial k-means (TFKM), where outliers
are iteratively removed in the reduced space, thus simultaneously identifying
radial outliers and designing better shaped clusters. This is obtained by min-
imising the trimmed least squares criterion in the reduced space. A preliminary
version of TFKM was first described in Farnè & Vouldis, 2021. Here, we em-
ploy MCD (Minimum Covariance Determinant, see Rousseeuw & Driessen,
1999) or ROBPCA (Hubert et al. , 2005) to robustly estimate the input covari-
ance matrix, and we then iteratively apply the trimming procedure to estimated
factor scores.

01 Department of Statistical Sciences, University of Bologna, (e-mail:
matteo.farne@unibo.it)
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2 Trimmed factorial k-means algorithm

Let us consider a n× p data matrix X. The trimmed factorial k-means of Vichi
& Kiers, 2001 assumes that

XAA′ = UYA′+E, (1)

where A is a p× r semi-orthogonal coefficient matrix, such that A′A = Ir; U
is a n× c membership matrix such that Ui j = 1, i = 1, . . . ,n, j = 1, . . . ,c, if
observation i belongs to cluster j; Y is a c× r centroid matrix; r is the latent
rank and c is the number of clusters. Model (1) assumes that the variable
space is approximately isomorphic to a latent linear space, spanned by the
same variables, on which the projected data vectors are maximally apart. It is
recovered by minimizing FKM(A,U,Y) = ∥XAA′−UYA′∥2 = ∥XA−UY∥2,
which is the deviance within clusters in the reduced space, where by least
squares we can obtain Y = (U′U)−1U′XA.

Denoting the n× r factor score matrix by F = XA, in this paper we as-
sume that (100α)% of the n true factor score vectors, with α ∈ [0,0.5], are
arbitrarily distant from the bulk of the rest of factor score vectors. Therefore,
in this situation it is appropriate to minimize FKM(A,U,Y) under the con-
straint ∑n

i=1 ∑c
j=1 Ui j = [(1−α)n], with ∑c

j=1 Ui j = {0,1}, for each i= 1, . . . ,n.
This problem can be numerically solved by adapting the original Alternated
Least Squares (ALS) algorithm of Vichi & Kiers, 2001 to the framework of
Rousseeuw & Van Driessen, 2000 (see also Farnè & Vouldis, 2021). In par-
ticular, once initialized, A, U, and Y are first recovered by the original ALS
algorithm, which is the H-step, and a trimming procedure is subsequently ap-
plied by excluding the [αn] observations most apart from the respective cluster
centroids in the reduced space, which is the C-step.

The algorithm input is the Minimum Covariance Determinant (MCD) co-
variance matrix estimate, if n ≥ 2p, or the ROBPCA-based reduced covariance
matrix with fixed rank p/10, otherwise. We call the algorithm input C. We
then fix the latent rank r, the number of clusters c, and the outlier proportion
α, and we apply the following procedure.

• Step 0. We derive the best r-ranked approximation of C as Cr = VrDrV′
r

by extracting the top r principal components of C. We generate a permu-
tation square matrix of size p, P, we orthogonalize it by Gram-Schmidt
algorithm, getting P̃, and we obtain the initial coefficient matrix as A0 =
P̃Vr. Then, we calculate F0 = XA0, the mean factor score F0, and the
distances di,0 = Fi,0 −F0, for i = 1, . . . ,n. We derive for each i a T -score
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as follows: Ti,0 = nd′
i,0C−1

F,0di,0, where CF,0 is the r× r covariance matrix
of F0. Then, we calculate the 2c quantiles of Ti,0, and we allocate each
object to the closest quantile among the first, the third, . . . , the (c−1)-th.
We thus obtain the initial membership matrix U0, and the initial centroid
matrix Y0 = (U′

0U0)−1U′
0XA0. We set k = 1, and we proceed as follows.

• Step 1. We minimize FKM(Ak−1,Uk,Yk−1) with respect to Uk given the
values of Ak−1 and Yk−1. For each row i of Uk, we first impose for each
ν = 1, . . . ,c that Uiν,k = 1, and we then set Ui j,k = 1 if and only if

arg min
ν=1,...,c

FKM(Ak−1,Uiν,k,Yk−1) = j.

• Step 2. We calculate Fk−1 = XAk−1, and the distances di,k = Fi,k−1 −
Yli,k−1, where li is s.t. Uili,k = 1. Then, we derive for each object a T -
score as follows: Ti,k = nd′

i,kC−1
F,k−1di,k, i = 1, . . . ,n, where CF,k−1 is the

r × r covariance matrix of Fk−1. At this stage, we derive the (1−α)-
quantile of Tk, T1−α,k, and we set Uili,k = 0 if Ti,k > T1−α,k.

• Step 3. FKM(Ak,Uk,Yk) is minimized keeping fixed Uk, to jointly up-
date Ak and Yk. Among all the linear combinations of X, the ones closer
to the centroids (in the transformed space) are derived by taking the
first r eigenvectors of X′(Uk(U′

kUk)−1U′
k − In)X (see Ten Berge, 1993).

Based on the optimal Ak, we can then update Yk using the expression
(U′

kUk)−1U′
kXAk.

• Step 4 FKM(Ak,Uk,Yk) is computed for the current values of Uk, Ak,
and Yk. If FKM(Ak,Uk,Yk) < FKM(Ak−1,Uk−1,Yk−1), we increase k
by 1 and we go again with Steps 1, 2 and 3. Otherwise, the process has
converged, we set k∗ = k−1 and we retain as solutions Uk∗ , Ak∗ , and Yk∗ .

The reported algorithm is repeated N = 1000 times, and the final solution is
chosen as the one with minimum objective FKM(Ak∗ ,Uk∗ ,Yk∗) across the N
trials.

A grid of possible values for the latent rank r, the number of clusters c
and the outlier proportion α is specified. Given that Y = (U′U)−1U′XA, and
rk((U′U)−1U′XA) = min(c−1,r), we cannot explore any combination violat-
ing the condition r ≤ c−1, to avoid singularity in the reduced space. We denote
the solutions for each triple (r,c,α) as U(r,c,α), A(r,c,α), Y(r,c,α), obtained
under the constraint ∑n

i=1 ∑c
j=1 Ui j = [(1−α)n], with ∑c

j=1 Ui j = {0,1}, for
each i = 1, . . . ,n. The optimal values of r, c, and α are then identified by
employing Hartigan’s statistic (1975), which can be obtained as follows.

First, within clusters deviance is computed for each triple (r,c,α) as
W (r,c,α) = ∑n

i=1 ∥di∥, where di = Fi(r,c,α)−Yli(r,c,α), li is such that
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Uili(r,c,α) = 1, F(r,c,α) = XA(r,c,α),
Y(r,c,α) = (U(r,c,α)′U(r,c,α))−1U(r,c,α)′XA(r,c,α). Second, Hartigan’s
statistic H(r,c,α) is obtained as

H(r,c,α) = (p− c−1)
(

W (r,c,α)
W (r,c−1,α)

−1
)
.

Finally, we select the triple (r∗,c∗,α∗) returning the maximum H(r,c,α) across
selected grid values.
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ABSTRACT: In this work, we present Statistically Enhanced Learning (SEL), a gen-
eral feature extraction approach to improve any type of learning technique, whether it
is statistical or machine learning. By adding highly informative covariates, which are
obtained as statistical estimates rather than directly observed, SEL improves model
learning for any type of data (tabular, computer vision, text). We will discuss the gen-
eral idea and refer to existing feature extraction methods that actually can be shown to
fall under the umbrella of SEL. In particular, we will see how SEL allows improved
predictions of handball tournaments and discuss how it can be used to derive a metric
for teams’ or players’ strengths.

KEYWORDS: Statistically Enhanced Learning, Feature extraction, Handball, Team’s
strength

1 Introduction

Statistically Enhanced Learning (Felice et al., 2023) is a framework that aims
to formalize the feature extraction step of the data processing in a machine
learning project. Classified in different categories, SEL approaches can include
proxy variables (Wooldridge, 2009) as well as statistical features that represent
non-measurable quantities (Groll et al., 2019). In particular, in sports predic-
tions, factors such as the strength of the opposing teams are crucial elements
but can not be measured objectively. Ley et al., 2019 proposed a bivariate
Poisson model to represent the outcome of football games. They estimate the
location parameter λ for each team via Maximum Likelihood Estimation ap-
proach. They assume that one can derive the ability of the opposing teams
using the formula λ = β0+ri−r j where β0 is a constant intercept, ri and r j are
the abilities for the home and away teams. These parameters are later included
in the training data set.

In the context of handball, Groll et al., 2020 analyzed historical games to
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determine the best probability distribution to model the number of goals scored
in handball matches. Given the level of under-disperson observed, they con-
cluded that a Gaussian distribution with low variance is the most appropriate.

In the following, we will extend the work done by Groll et al., 2020 and
consider an additional discrete probability distribution. From this distribution,
we will generate a metric representing the strength of a team. This metric can
then be considered as a new SEL variable to be added in a training set to predict
the outcome of handball games.

2 Modelling handball games with Conway-Maxwell-Poisson

As a fast-paced sport, handball can record a large number of goals during a
60 minute game (on average 27.9 for women and 29.8 for men). To model
the number of goals scored, the traditional Poisson distribution assumes equi-
distribution (i.e. E(X) = V(X)), however, historical data rarely satisfy this
assumption.
Therefore, we compare here different distributions: the Gaussian and Negative
Binomial distributions (as in Groll et al., 2020) and the Conway-Maxwell-
Poisson distribution (Sellers, 2023). The latter is a generalization of the com-
mon Poisson distribution, which can handle under- and over-dispersion.

Table 1: Comparison of log-likelihood evaluated on scored goals by Metz
handball over season 2022/2023.

Distribution Log-likelihood AIC
Conway-Maxwell-Poisson -127.66 259.31
Gaussian -127.39 258.78
Negative Binomial -127.36 258.72

As we can observe in Table 1, the three distributions seem to equivalently
fit our data. However, we can notice the slight superiority of the Conway-
Maxwell-Poisson distribution. Thus, given the continuous nature of the Gaus-
sian distribution, we decide to discard it. Indeed, it can return non-integer val-
ues but, more problematically, it is defined on the real line which includes neg-
ative values. Furthermore, in our experiments, the Conway-Maxwell-Poisson
distribution consistently showed superiority over the Negative Binomial.
As a result, and considering its flexibility to handle any of the under-, over-
, and equi-dispersion, we consider the Conway-Maxwell-Poisson distribution
for the rest of this work.
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3 Estimation of team’s strength

Adopting the selected Conway-Maxwell-Poisson (CMP) distribution, we use
its parameters to represent the strength of a team both for attack and de-
fense. With the distribution of scored goals following a CMP distribution,
Ya ∼ CMP(λa,νa), the parameter λa > 0 can act as a location parameter and
νa ≥ 0 as the dispersion parameter. We define the attack strength of a team as:

sa =
log(λa)

νa
. (1)

We want to penalize for irregular performances, hence we use νa as the de-
nominator so the higher the irregularities the lower the attack strength score.
Similar to attack, the distribution of goals conceded by a team follows a CMP
distribution, Yd ∼ CMP(λd ,νd). However, the strength of a team’s defense is
inversely proportional to the goals it concedes. Thus, we define the defense
strength sd as:

sd =
νd

log(λd)
. (2)

A team is considered strong when it can perform well in attack and defense.
We can consider the overall strength of a team as the product of attack and
defense strengths, formally:

s = sa · sd =
log(λa) ·νd

νa · log(λd)
. (3)

Empirically, we illustrate these results in Table 2 with European female clubs.
We can observe that the teams considered the strongest are the leading clubs
in their country and strong competitors in the European Champions League.

4 Conclusion

Using the parameters from the fitted Conway-Maxwell-Poisson distribution,
we can estimate the strength of a team. The estimated parameters constitute
new SEL variables to be added to the training set for match predictions (Felice,
2023). These estimations can also be applied, with a similar logic, to player’s
performance and derive the player’s strength. Our results and conclusions are
derived from men and women club’s data, but we note that they also apply to
national teams for international competitions.
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Table 2: Top 10 strongest female teams in Europe for season 2022/2023.

Team Avg. scored Avg. con-
ceded

Attack
strength

Defense
strength

Strength

Győri Audi ETO KC 33.32 24.32 3.49 3.16 11.00
Vipers Kristiansand 37.62 26.38 3.57 3.07 10.96
Podravka Vegeta 30.50 21.75 3.39 3.21 10.89
Metz handball 33.58 24.00 3.47 3.12 10.85
Team Esbjerg 33.33 24.67 3.48 3.11 10.83
SG BBM Bietigheim 34.63 25.21 3.54 3.05 10.80
HC Dunajskà Streda 29.37 22.62 3.38 3.15 10.63
Herning-Ikast Håndbold 28.71 23.29 3.39 3.13 10.61
DVSC Schaeffler 30.83 24.11 3.39 3.12 10.59
CSM Bucures, ti 33.13 25.83 3.48 3.05 10.58
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ABSTRACT: Shapley values are a practical tool from Explainable AI used to interpret
model outcomes on the observation level. Their usefulness has also been demonstrated
in the context of multivariate outlier detection, where the contributions of single vari-
ables to the overall outlyingness are evaluated. This allows for an alternative view
to cellwise outlyingness, where the interest is in identifying deviating cells of a data
matrix. The concept of outlier explanation based on Shapley values can be extended
to outlyingness for matrix-valued observations, which is an interesting new topic in
robustness by itself.

KEYWORDS: Anomaly explanation, Shapley value, Mahalanobis distance.

1 Shapley Values for Vector-valued Observations

Shapley values have been introduced in cooperative game theory, where they
evaluate the collective payoff of a coalition of players (Shapley, 1953). In
the context of multivariate data, each observation is analyzed separately. A
player would be an individual variable, and one can be interested in a subset of
variables’ effect on an outcome. For example, for a black-box method in clas-
sification, we might want to know why an observation has been assigned to a
particular class. Shapley values allow evaluating how the variables contributed
to the classifier’s decision (Lundberg & Lee, 2017).

Also, in the context of multivariate outlier detection, it is of interest why
an observation has been declared outlying. A traditional tool for multivariate
outlier detection is the Mahalanobis distance (Mahalanobis, 1936). To reli-
ably identify outliers, it is essential to robustly estimate mean and covariance
(Rousseeuw & Zomeren, 1990), and one option is to use the Minimum Covari-
ance Determinant (MCD) estimator (Rousseeuw & Driessen, 1999). Shapley
values can be adapted to the setting of squared Mahalanobis distances: One can
obtain a decomposition of this distance measure into an outlyingness score for
each variable, which can be interpreted as the average marginal contribution
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to the outlyingness of an observation (Mayrhofer & Filzmoser, 2023). The
sum of all these contributions is identical to the squared Mahalanobis distance
of the observation. Another interesting feature is that the computational com-
plexity of determining the Shapley values reduces to a very simple problem
in the context of Mahalanobis distances, and thus the computations are very
time-efficient, also in higher dimensions.

While the Shapley values inform about the contribution of the variables
to the outlyingness of an observation, they do not inform about the values
these cells would have if the observation would not be contaminated. This,
however, is the goal of cellwise outlyingness methods (Rousseeuw & Bossche,
2018). A modification in the calculations of Shapley values also allows getting
this information by which amount a cell needs to be modified to make the
observation non-outlying (Mayrhofer & Filzmoser, 2023). As an outcome,
one can obtain diagnostics regarding cellwise outlyingness.

2 Shapley Values for Matrix-valued Observations

Another important class of data structures are matrix-valued observations. Thus,
the information is represented in the rows and columns of a matrix, and a
prominent example are image data. Often, matrix-valued observations are vec-
torized; for example, the pixel information of an image can be arranged in a
long vector, which then forms one row of a “traditional” data matrix. This
leads to very high-dimensional data in which the neighborhood relationship of
the pixels is lost.

The concept of matrix-valued data is not new at all, and a prominent distri-
bution in this context is the matrix normal distribution (Dawid, 1981). There
are different proposals in the literature on how to estimate the parameters of
this distribution (Dutilleul, 1999). It is also possible to define a Mahalanobis
distance, and the concept of the MCD estimator can be modified to obtain ro-
bust estimators. Finally, Shapley values can be used, and their contributions
again sum up to an observation’s squared Mahalanobis distance. In the con-
text of image data, for example, one can identify outlying images and explain
which pixels contribute to this outlyingness. A more detailed background, as
well as illustrative examples, will be provided in the presentation.
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ABSTRACT: Misogyny is the hatred, dislike, and mistrust towards women simply be-
cause of their gender, accompanied by ingrained prejudice against them. Our study
focuses on producers of misogyny on social media platforms, specifically examining
content shared in Italian on Twitter. Using a substantial collection of Italian tweets, we
analyse textual and relational data from the friend/follower network to classify Twit-
ter accounts based on a binary misogyny scheme. We employ Graph Convolutional
Networks to achieve this.

KEYWORDS: misogyny, textual data, relational data, Graph Convolutional Networks

1 Introduction

Cyberspace is often misused to spread offensive and abusive content. Women
are among the most targeted groups for online abusive content (Amnesty Inter-
national Italia, 2022). Hate speech against women is strongly linked to misog-
yny, which is the cultural attitude of hatred towards females simply because
they are female. In our research, we focus on identifying producers of misogy-
nistic content shared in Italian on Twitter. Specifically, we tackle an automatic
classification task by utilising textual-based features extracted from the shared
content, as well as relational data derived from the network of relationships
between Twitter accounts. In hate speech research, studies have focused on
automatically detecting abusive online content, while more recently, attention
has shifted towards examining the behaviour and relationships of individuals
who spread abusive comments on mainstream platforms. Only a few studies
have adopted a network modelling approach (Chatzakou et al., 2017; Mishra
et al., 2018). These studies have integrated graph-based features from the pro-
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ducers’ network into a classification model along with textual data to enhance
the classification performance. However, as far as we know, networked data
has not been utilized to identify misogynistic producers of online content.

2 Materials and methods

2.1 Textual and relational data

To build the textual corpus, we downloaded Italian tweets containing key-
words, mentions, and hashtags related to approximately fifty politically-active
women, feminists, journalists, influencers, and female television personalities.
Tweets were downloaded in real time from August to December 2022, and the
downloaded dataset contains 1,002,226 tweets, associated with 204,095 ac-
counts. We filtered out accounts that no longer existed, information providers
(e.g., newspapers, radio stations, television channels and programs, news ag-
gregators), and accounts with less than 5 tweets. To ensure a less biased com-
position of the retrieved network, we down-sampled the accounts with tweets
focusing only on Giorgia Meloni. This was necessary because approximately
75% of the total number of tweets mentioned her, which was a result of the
electoral campaign and her subsequent role as Prime Minister. The final dataset
includes 82,807 tweets from 7,371 accounts, and the friend/follower relations
among these accounts were retrieved.
We manually annotated a subset of 942 accounts using a misogyny binary
scheme. To select these accounts, we considered node centrality measures to
ensure a well-spread sample on the network that included nodes with the high-
est degree and betweenness indexes. We also considered the distribution of
tweets by the women included in the corpus construction to ensure a larger
variability in the textual content and higher domain coverage. Finally, we used
the revised Hurtlex dictionary (Tontodimamma et al., 2023) to compute an of-
fensiveness score at the producer level. Out of the annotated accounts, 44.6%
were flagged as misogynistic.

2.2 Collective classification and Graph Convolutional Networks

Given a network, represented through a graph G = (V ,E), where V is the
set of nodes and E the set of edges, different information can be associated
with each node v ∈ V . In particular, we might have a set of local features xv,
generally assumed known for the entire network, and a label yv, which can be
observed only on a node subset. In this setting, a collective classification pro-
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cedure allows to jointly predict the unobserved labels considering the attributes
of the nodes to be predicted in addition to the observed attributes and labels and
unobserved labels of neighbouring elements. GCNs (Kipf & Welling, 2017)
are a type of neural network that can perform collective node classification by
learning a function f that maps a feature description xv and the graph struc-
ture, represented by an adjacency matrix A, to a node-level output y(U), where
U ⊂ V is the unlabelled nodes subset. By jointly considering the feature de-
scriptions and the graph structure, GCNs can improve classification accuracy
compared to traditional machine learning models that only use node features.
In our analysis, we utilised a binary scheme for the misogyny classification
task. We employed users’ textual data to extract node local features, while
relational data were derived from the friend/follower users’ network.

3 Preliminary results

For these preliminary results, the feature matrix was built through a bag of
words approach, where functional words (i.e., pronouns, prepositions, con-
junctions) and non specific domain terms, along with a misogynistic tailored
lexical dictionary, were included in the document-term matrix. For the imple-
mentation of GCNs, we adopted the FastGCN algorithm (Chen et al., 2018).
In the classified network the misogynistic accounts amount to the 27.0% of the
nodes. Figure 1 highlights some network characteristics of the misogynistic
accounts: they are likely to be clustered, tend to follow more people, to be
followed by less people, and to have less importance in the network structure.

4 Conclusion and future works

From our preliminary results, collective node classification performed through
GCNs shows promising results regarding the prediction of misogynistic ac-
counts. Our findings are in line with previous research on hater networks
(Ribeiro et al., 2018; Mathew et al., 2019) that showed how hateful social
media users are very densely connected and differ from normal ones in terms
of their word usage and network structure. It also results from literature that
haters are more likely to have a lower number of followers while following a
larger number of accounts.
As future work, we will compare different GCN models using different types
of embeddings to derive the feature matrix, and we will also explore masking
techniques to ensure cross-domain comparison.
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Figure 1. Classified network - misogynistic accounts are depicted in pink - and cen-
trality measures’ qqplots
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ABSTRACT: Depth functions have long been used to describe the quantiles of multi-
variate distributions. Also, local depth functions have been used for classification and
clustering. These objects have been extended to functional and metric space valued
data. In this presentation we describe depth functions for the intensity measure of
a point process. When the point process consists of i.i.d. components we obtain the
depth of those components. Specifically, we study point processes indexing the edges
of Galton-Watson trees and investigate their statistical properties. We use these results
in classification of tree-indexed data and develop an analog of the DD-classifier.
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ABSTRACT: In the literature on topic modelling, network-based procedures for topic
detection have become popular as an alternative to classical topic models, showing
promising results. However, the lack of a systematic analysis of how the design
choices made in text processing and network definition affect the results in terms of
topics detected makes using these procedures demanding. Therefore, this work aims
to fill this gap by showing how and to what extent the choices made during the analysis
influence the features of the topics discovered.

KEYWORDS: text network analysis, community detection, topic detection

1 Introduction

Network-based procedures for topic detection are based on the idea that any
text can be represented as a word co-occurrence network, where topics are
defined as groups of strongly connected words (Hamm & Odrowski, 2021).

More specifically, a network-based topic discovery process is made up of
different steps that could be summarised as follows: i) text preprocessing; ii)
definition of the word co-occurrence matrix; iii) network definition and selec-
tion of the community detection algorithm.

Even if many works have applied network-based procedures for analysing
textual data and discovering topics, none of them focused on how the choices
made in the design phase affect the final result in a systematic way.

Thus, this work aims to start filling this gap by studying how and to what
extent some of the choices made during the analysis influence the features
of topics discovered. In particular, in this work, we focused primarily on the
definition of the word co-occurrence matrix and the selection of the community
detection algorithm, as these steps are unique to network-based approaches.
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2 Method and Materials

We conducted the analysis employing the BBC news article collection, a widely
used corpus in the context of textual analysis and topic detection. The col-
lection comprises 2,225 complete news articles collected from 2004 to 2005
regarding five topics: business, entertainment, politics, sport and technology
(Greene & Cunningham, 2006).

As text preprocessing, we removed non-alphanumeric characters, numbers
and words composed of 1 or 2 characters, divided the text into tokens (uni-
grams), removed the stopwords using a stoplist provided with the dataset, and
finally stemmed the text. Then, we removed words with a value of tf-idf less
than 0.01 (Allahyari et al., 2017). At the end of the preprocessing step, the
number of unique word tokens was equal to 18,422.

The word co-occurrence matrices were generated by counting the number
of times two words co-occur in the same document within a specific window
size, that is a set of neighbouring words within a specified distance, respec-
tively equal to 2, 5, 10, 15 and 20 words on the right of the baseline word.

Afterwards, we defined different filters and weighting schemes on the word
co-occurrence matrices. The first aspect was examined by removing from the
word co-occurrence matrix the 100, 500, and 1000 words with the lowest
co-occurrence values and the 50, 100, and 500 words with the highest co-
occurrence values.

On the other hand, the second aspect was tested by considering an addi-
tional weighting scheme based on word proximity. In this case, we assigned
more weight to the words nearest the target one inside the window. For ex-
ample, for a window size equal to 5, we set a weight equal to 1 to the word
adjacent to the target word, a weight equal to 4/5 to the next word and so on,
until the last word, which takes a weight equal to 1/5.

Finally, we employed the Louvain community detection algorithm, New-
man’s leading eigenvector algorithm and the SLPA algorithm to discover topics
in text networks obtained from the word co-occurrence matrices (interpreted
as weighted adjacency matrices). The first two algorithms are non-overlapping
community detection algorithms based on modularity maximisation, while the
third is an overlapping community detection algorithm (Blondel et al., 2008,
Newman, 2006, Xie et al., 2013).

The choice of using an overlapping community detection algorithm lies
in the hypothesis that while non-overlapping community detection algorithms
could correctly assign topics’ characteristic words, multi-topic words could be
arbitrarily assigned to one of the communities they should have been included.
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3 Results

Our findings showed that with the increase in the window sizes, the number
of communities found by the three algorithms decreases, remaining stable for
window sizes greater than 5. In particular, for window sizes greater than 2, the
number of communities found by the Louvain algorithm and Newman’s algo-
rithm is always greater than the number of communities identified by SLPA,
which finds only one community with these settings.

Further to this point, Newman’s algorithm generally finds three communi-
ties in the different experimental settings, while the Louvain algorithm finds
almost always five communities for window sizes greater than 5. Notice that
the communities found by the Louvain algorithm are coherent in number and
content with the BBC news articles collection’s topics. Interestingly, when the
Louvain algorithm finds a number of communities greater than five for window
sizes greater than 5, they are pretty unbalanced, with five bigger communities
coherent with the original topics.

Computing the ARI (Hubert & Arabie, 1985) on the communities found
by the Louvain algorithm under different settings, we observed that the ARI is
generally high for different window sizes, particularly between the partitions
obtained for window sizes greater than 5 (ranging from 0.604 to 0.878). This
result shows that even if the algorithm finds the same number of communities,
they are not identical.

Filters on words with the lowest degree from the word co-occurrence ma-
trix do not affect the results. Conversely, removing words with the highest
word co-occurrence remarkably increases the number of communities found
for a window size equal to 2 (ranging from 27 to 112).

Similarly, using a different weighting scheme does seem to affect the num-
ber of communities found, which is noticeably higher when we use the prox-
imity weighting scheme. However, also in this case, increasing the window
sizes decreases the number of communities found.

4 Conclusions

The results obtained show that different design choices during text prepro-
cessing and network definition affect the features of topics detected, mainly in
terms of the number of topics discovered. For future work, we aim to focus
on extending the assessment of the effects of these design choices on different
kinds of texts, such as textual social media (like Twitter or Facebook).
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ABSTRACT: It is known that outliers can be problematic when statistical techniques
are applied. This is also the case in Cluster Analysis and, with this in mind, the
TCLUST method was introduced as a robust clustering alternative. Given a fixed trim-
ming level α, TCLUST attempts to detect the fraction α of observations that should
best be discarded after assuming k normally distributed components. However, the
main problem is how to determine reasonable values for k and α for a given data set.
An approach was introduced to choose k and α through visual inspection of “classi-
fication trimmed likelihood” curves. Theoretical background will be provided for a
better understanding of that approach, along with a parametric bootstrap method to
reduce subjectivity and produce a small list of sensible robust clustering partitions.

KEYWORDS: clustering, robustness, trimming, outliers

1 Robust clustering and TCLUST

It is well known that outliers can be problematic when applying statistical
methods for data analysis, and this also happens in the case of Cluster Anal-
ysis. Outliers can affect clustering methods in such a way that main clusters
can be joined artificially or clusters formed of few outlying observations are
detected (see, e.g., Garcı́a-Escudero & Gordaliza, 1999). Moreover, it is in-
teresting to apply clustering techniques to deal with outliers since clustered
sets of outliers are known to be particularly harmful for many (even robust)
statistical procedures. Consequently, different robust clustering methods have
been introduced that can be used successfully to jointly deal with clusters and
outliers (Ritter, 2014, Garcı́a-Escudero et al., 2016).
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One such approach to robust clustering is based on applying impartial trim-
ming. Given a fixed trimming level α, the term “impartial” means that is the
data set itself that indicates what fraction α of observations should be trimmed.
The TCLUST method introduced in Garcı́a-Escudero et al., 2008 is a robust
clustering procedure based on that impartial trimming principle and where el-
liptically contoured clusters are allowed.

Given a sample X = {x1, ...,xp} in Rp, the TCLUST method is defined by
maximizing

k

∑
j=1

∑
i∈R j

log(π jφ(xi;µ j,Σ j)), (1)

where φ(·;µ,Σ) is the density function of the p-variate normal distribution,
{R0,R1, ...,Rk} is a partition of the indexes {1,2, ...,n} such that #R0 = [nα].
Also, in that maximization, we enforce

Mn/mn ≤ c

for Mn = max j=1,...,k maxl=1,...,p λl(Σ j) and mn = min j=1,...,k minl=1,...,p λl(Σ j)
being, respectively, the largest and the smallest of the eigenvalues of the Σ j
scatter matrices. The constant c ≥ 1 plays an important role by avoiding un-
interesting “spurious clusters” and providing well-defined mathematical prob-
lems. The π j ≥ 0 weights also satisfy ∑k

j=1 π j = 1.
The TCLUST procedure can be implemented using the tclust package

in R (Fritz et al., 2012) and the FSDA Matlab toolbox (Riani et al., 2012).
However, TCLUST requires the simultaneous specification of the number of
clusters k and the trimming fraction α. Choosing correctly those two parame-
ters for a given data set is not always an easy task because, for instance, a set of
close outliers could be considered as “noise” to be trimmed (requiring a higher
α) or, alternatively, as an additional cluster (requiring a higher k). Therefore,
the determination of k and α is a clearly interrelated problem that requires an
unified treatment. Even choosing the number of groups k in Cluster Analysis,
without trimming, is already well known to be a very complex problem.

2 Classification trimmed likelihood curves

A graphical procedure for selecting sensible values for k and α for TCLUST
(when c is fixed) was introduced in Garcı́a-Escudero et al., 2011. The proce-
dure was based on the visual inspection of the so-called “classification trimmed
likelihood” curves. These curves are defined through

(k,α) 2→ LΠ(α,k;X ), (2)
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where LΠ(α,k;X ) denotes the maximum value reached in the constrained
maximization of (1). Garcı́a-Escudero et al., 2011 explained that

tn
k,α = LΠ(α,k+1;X )−LΠ(α,k;X )

should not be too small when there is a clear benefit in increasing k to k+ 1
for a trimming level α. This heuristic led to a graphical exploratory tool for
choosing reasonable values for k and α.

Given a probability measure P, we can define a population version of the
TCLUST problem (Garcı́a-Escudero et al., 2008). We can also define popula-
tion versions of the classification trimmed likelihoods appearing in (2), which
are denoted as LΠ

α,k(P). We have that LΠ
α,k(Pn) = LΠ(α,k;X ), where Pn de-

notes the empirical measure corresponding to X (X seem as the realization of
an i.i.d. sample from P). Given the consistency

LΠ
α,k(Pn)→ LΠ

α,k(P),

and the fact that tn
k,α = LΠ

α,k+1(Pn)−LΠ
α,k(Pn), it makes sense to analyse the

behaviour of LΠ
α,k(P) to see under what circumstances tn

k,α should be small.
Theoretical have been obtained on the expected changes in LΠ

α,k(P), when in-
creasing k to k+1, depending on the underlying distribution P. These results
provide some theoretical background to better understand the key ingredients
involved in the classification trimmed likelihood curve and how these curves
should be interpreted.

3 Parametric bootstrap automated procedure

In practical applications, it is not always easy to determine sensible values for
k and α just from that visual inspection of the classification trimmed likelihood
curves. The user must make rather subjective decisions about whether or not
tn
k,α can be considered small due to sample variability. A parametric bootstrap

procedure will be presented trying to overcome that trouble.
By applying TCLUST to compute tn

k,α, we also obtain parameter estimates
for the k fitted normal components. These parameters are used to draw B para-
metric bootstrap samples {X ∗b}B

b=1, but also trying to emulate the mechanism
generating the fraction α of contaminating observations in X . If k and α are
reasonable parameters, then {L(α,k+1;X ∗b)−L(α,k;X ∗b)}B

b=1 would allow
us to “mimic” the sampling distribution of tn

k,α and compute bootstrap p-values
as

pk,α =
#{b : L(α,k+1;X ∗b)−L(α,k;X ∗b)> tn

k,α}
B

.
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We can use these bootstrap p-values to finally get a reduced list of reason-
able k and α values for applying TCLUST in an fully automated way. Users
can use this reduced list to choose the robust cluster partition that best meets
their ultimate cluster and outlier detection goals, by applying standard cluster
validation/visualization tools.

Illustrative and real data examples, together with a simulation study, also
seem to justify the interest of the automated selection proposal. Therefore, we
consider that the proposal is clearly valuable since it can certainly help the user
in the detection of anomalies.
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GARCÍA-ESCUDERO, L.A, GORDALIZA, A., MATRÁN, C., & MAYO-
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5 Department of Sociology, Stockholm University, Stockholm, Sweden
6 Department of Social Work and Criminology, University of Gävle, Gävle, Sweden

ABSTRACT: Criminal careers can be categorised as either general or specialised. A
key challenge in studying crime specialisation is determining which crimes should be
considered similar and which should be considered distinct from the criminal’s per-
spective. We conducted an empirical study involving a large group of Swedish sus-
pects to address this issue. The primary objective was to investigate generalist and spe-
cialist behaviour in crime. By employing directed network analysis, our study aimed
to uncover temporal patterns of criminal specialisation. Specifically, we examined the
temporal connections between different types of crimes to reveal distinct patterns in
criminal behaviour. The findings indicate that individuals who were suspected of at
least two crime types within each of the five communities throughout their criminal
careers demonstrated varying patterns of specialisation evolution. In contrast, some
individuals consistently maintained high levels of generalism. These results highlight
the diverse paths individuals take in their criminal behaviour and contribute to our
understanding of the dynamics of criminal specialisation over time.

KEYWORDS: communities and criminal specialisation, complex networks, criminal
temporal patterns.

1 Introduction

Specialisation in criminal behaviour has significant implications for compre-
hending the root causes of crime (Piquero, 2000). Theories, such as those fo-
cusing on the relationship between brain functioning and delinquency, which
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includes brain damage (Neylan, 1999) and low or unstable serotonin levels
(Alm et al., 1996), assume that violent crime is the specialisation of aggres-
sive individuals. Similar contemplations are applicable to theories that explore
the interactions between genetic and social factors that can lead to violence
(Wolfgang et al., 1967). Sutherland’s differential association theory (Suther-
land et al., 1992) postulates that crime is learned behaviour, thereby suggesting
high crime specialisation. Thus, criminal specialisation is a multifaceted issue
that is central to criminology, crime prevention, and enforcement (Loeber &
Farrington, 1998). In this study, we analyse the Swedish national register of
individuals suspected of criminal offences, which comprises about 750,000 in-
dividuals that have been suspected of at least 2 crimes in Sweden from 1995 to
2016. The database includes information such as age and sex of the suspects,
the types of crimes (521 categories) they have been suspected of, and the date
(or period) when the crime was committed. The aim of this work is to dis-
cover temporal patterns of criminal specialisation. We utilise directed network
analysis to study the temporal association between crime types to reveal these
temporal patterns in criminal behaviour.

2 Statistically validated temporal networks

We used a statistically validated network approach for temporal network anal-
ysis (SVTN) to assess specialisation in crime. Additionally, to accommodate
the database’s heterogeneity caused by suspects involved in different numbers
of crimes, we partitioned the database into multiple subsets, S f , according to
the number of crimes per criminal. Further details on this can be found in Tum-
minello et al., 2013. We tested the null hypothesis of random co-occurrence
between two crimes, a and b, using the hypergeometric distribution.

pvalue(n f
ab) =

min(n f
a ,n

f
b )

∑
x=n f

ab

(n f
a
x

)(N f −n f
a

n f
b−x

)

(N f

n f
b

) , (1)

where N f is the number of criminals in subset S f , n f
a (n f

b), is the number of
criminals that committed crime a (b) in the subset S f , and n f

ab is the number
of criminals who were suspected (with a temporal direction) of both crimes, a
and b.
The null hypothesis of random co-occurrences exactly takes into account the
heterogeneity of both the types of crimes, a and b, by conditioning to n f

a and
n f

b (Tumminello et al., 2013). We calculated the p-values in every subset S f
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to construct a weighted network of crime types based on the excess of co-
occurrence. Then, we used the FDR correction for multiple hypothesis testing
(Benjamini & Hochberg, 1995) to adjust the p-values. In contrast to the study
conducted by (Tumminello et al., 2013), this work’s novelty lies in incorpo-
rating the temporal element in hypothesis testing, enabling us to examine the
temporal progression of criminal specialisation. Our SVTN is a weighted di-
rected network with labelled links. Indeed, it comprises four types of links,
which are defined as follows:

• JO: a and b jointly occur (undirected link) a−b;
• PR: crime a precedes crime b if a occurred before b, a PR−→ b;
• CO: b contains a if crime a occurred entirely within the time interval in

which crime b was perpetrated, a ! " b ;
• PO: crime a and b partially overlap if b begins after a and ends after a,

a PO−→ b.

As seen in the list above, there are two types of links, namely PR and PO,
that are temporally directed. These two link types provide information about
the temporal progression of criminal activity and are considered separately
from the other link types. By concentrating on these links, we developed a
weighted directed False Discovery Rate (FDR) network, in which each link
corresponds to a statistically significant p-value (5% threshold) after the FDR
correction, while the weight is determined by the total number of subsets S f in
which the link is significant.

3 Preliminary results

We utilised the MapEquation (Edler et al., 2022) to identify the hierarchical
structure of communities within the network. We discovered five primary com-
munities, each consisting of a minimum of 20 crime types that subsequently
divided into smaller communities. These large communities represent distinct
types of criminal specialisation: 1) fraud, forgery, and taxation (120 crime
types); 2) assault, rape, and persecution (198 crime types); 3) drugs, narcotics,
attempted homicide, and homicide with a firearm (85 crime types); 4) theft and
arson (66 crime types), and 5) violence against unacquainted victims (28 crime
types)*. Individuals who were suspected of at least two crime types within each

*In addition, there are three smaller communities that do not further split into more specific
ones: environmental crimes (20 crime types), human trafficking for forced labour (2 crime
types), and robbery from a shop or a taxi (3 crime types).
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community during their criminal career exhibited different patterns of special-
isation evolution. Some groups achieved high levels of specialisation early on,
while others maintained relatively high levels of generalism even later in their
careers.
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ABSTRACT: In this manuscript, leveraging the Tucker3 model, we investigate the
gender gap in mortality considering the ratio of male to female mortality rates, specific
for age, cause of death, and cohort. The model is applied to a tensor containing gender
gap data by causes, age classes, and non-extinct cohorts.
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1 Introduction

Understanding mortality is of great importance for both private and public sec-
tors to design appropriate pension or insurance plans. To this purpose, several
interesting applications of multi-way models to mortality data are available in
the literature (see, e.g., Cardillo et al., 2023). Generally speaking, in these
studies, data usually refer to mortality rates across demographic features such
as causes of death, ages, countries, and years. This work represents a further
step in mortality analysis by focusing on the gender gap (Zarulli et al., 2021) in
causes of death and its evolution by cohort. Limiting our attention to the three-
way case, the Tucker3 model is applied to a tensor containing gender gap data
in mortality distinguished by causes of death, age classes, and cohorts.

2 Three-way data and models

A three-way array or tensor X of order (I × J ×K) can be seen as a box con-
taining scores on a set of I observation units with respect to J variables in
K different occasions. Observation units, variables and occasions are usually
referred to as “modes”. The generic element of X is xi jk giving the score
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of observation unit i (i = 1, . . . , I) on variable j ( j = 1, . . . ,J) at occasion k
(k = 1, . . . ,K). Thus, there are three ways or indices, one for each mode. The
array X can be seen as a collection of standard matrices of order (I × J), one
for every occasion.

It is often convenient to summarize X to unravel the relevant information
hidden in the data. To this purpose, suitable extensions of Principal Compo-
nent Analysis for arrays should be considered. One of the most famous models
is the Tucker3 one (Tucker, 1966). The Tucker3 model synthesizes X by ex-
tracting P (< I), Q (< J) and R (< K) components for the observation units,
variables and occasions, respectively, thus allowing different levels of com-
plexity for the three modes. Let Xa be the matrix of order (I × JK) obtained
by juxtaposing next to each other the standard matrices pertaining to every
occasion. The Tucker3 model can be formalized as

Xa = AGa (C⊗B)T +Ea, (1)

where A of order (I ×P), B of order (J ×Q) and C of order (K ×R) are the
component score matrices for the observation units, the variables and the occa-
sions, respectively. Therefore, each mode is summarized by the corresponding
set of components. The triple interactions among such components are mea-
sured by the three-way array G of order (P×Q×R) called core. Finally, Ea
is the error matrix of order (I × JK) and the symbol ⊗ denotes the Kronecker
product. Estimation of the model parameters is carried out in the least square
sense by

min
A,B,C,G

||Ea||2, (2)

being || · || the Frobenius norm of matrices. An alternating least squares algo-
rithm can be used. It can be shown that the obtained solution is not identifiable.
In fact, all component matrices as well as the core array can be rotated. The
non-identifiability can be exploited in order to rotate the solution to a simple
structure. Given P, Q and R, we can assess the fit percentage of the Tucker3
model as (

1− ||Ea||2

||Xa||2

)
100. (3)

The closer to 100, the better the fit of the Tucker3 model. The optimal numbers
of components P, Q and R can be found by balancing fit and parsimony, bear-
ing in mind that interpretability is of relevant importance. For further details
on the Tucker3 model and related multi-way models, the interested reader may
refer to (Kroonenberg, 2008).
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3 Results

The analyzed data come from the Human Cause-of-Death Database (HCD) and
refer to the mortality rates distinguished by causes of death, age classes and co-
horts registered in the United States of America. In particular, we consider the
mortality rates of I = 7 causes of death (Infectious diseases, Neoplasms, Car-
diovascular diseases, Respiratory diseases, Digestive diseases, External causes
of death, Other causes of death) distinguished in J = 7 five-year age classes
from 60 to 90 years for cohorts of people born in K = 10 years from 1919 to
1928. In order to deal with fully crossed data, i.e. all observation units have
scores on all variables on all occasions, such mortality rates are collected for
the years 1979–2018. Letting mF

i jk and mM
i jk be the mortality rates of the cause

of death i at age class j for cohort k for females and males, respectively, the
generic element of the three-way gender gap data array X is

xi jk =
mM

i jk

mF
i jk

, (4)

expressing to what extent the mortality rate for a certain cause of death of a
given age and belonging to a specific cohort of males differs from the corre-
sponding rate for females.

To assess whether and how gender differences in mortality are related to
causes of death, ages and cohorts, the Tucker3 model with P=Q= 2 and R= 1
components is used. To motivate this choice, we observe that the fit percentage
is rather high (91.60%), despite the low total number of components (P+Q+
R = 5), and the solution is well interpretable. In this respect, simplicity is
achieved by transforming Ga to the identity matrix and applying the varimax
(Kaiser, 1958) rotation to B compensating it in A. In this way, the components
for the causes of death and those for the age classes are related one-to-one.

The component matrix A for the causes of death is displayed in Figure 1.
The component matrix B for the age classes (not reported here) distinguishes
the younger ages (from 60 to 70) with large positive first component scores and
the older ages (from 75 to 90) with large positive second component scores.
Taking into account that the component scores for the cohorts are all positive
and decreasing passing from cohort 1919 to cohort 1928, the main findings are
that the gender gap for ages 60–70 increases in connection with Cardiovascular
diseases and External causes and decreases with Infectious diseases and Other
causes. This especially holds for the oldest cohorts. Conversely, for ages 75–
90, the gender gap for Neoplasms and Respiratory diseases is high, whilst
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Figure 1. Component scores for the causes of death.

the opposite comment holds for Digestive diseases. Further results will be
presented during the conference.
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ABSTRACT: A robust procedure based on impartial trimming is discussed, aimed to
protect nonparametric clustering stemming from kernel mean shift from the deleteri-
ous effect of outliers.
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1 Introduction

The problem of data contamination, where unexpected points that do not share
the pattern of the majority of the data are observed, is known to possibly hin-
der the validity of inferential procedures. The issue is even more critical in
clustering, where the lack of a reference ground-truth to aim at makes even the
simplest problem an ill-posed one. Genuine observations forming small clus-
ters can be mistaken with outliers (swamping); on the other side, outlying data
lying close to each other just by chance can form spurious clusters (masking).
Moreover, in this setting it is quite difficult to state a working notion of outliers,
and robustness is not only data dependent, but rather cluster dependent (Hen-
nig, 2008), which is itself often arbitrary. It then looks clear how contaminated
data can compromise or even invalidate unsupervised techniques.

A large amount of work has been done to define robust clustering strate-
gies in the mainstream approaches within the distance- and the model-based
approach (see Farcomeni & Greco, 2016, for a review). Conversely, the issue
has been largely neglected in the nonparametric framework, where clusters are
identified as the domains of attractions of the modes of the underlying den-
sity (Stuetzle, 2003). The correspondence between groups and modal regions
entails some reasons of attractiveness: clusters are not constrained to predeter-
mined shapes, and resorting to nonparametric methods keeps this flexibility;
additionally, the number of clusters is inherent of the data density, hence deter-
mined as part of the estimation procedure (see, Menardi, 2016, for a review).
However, these very same properties turn out to be pitfalls of nonparametric
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methods in the presence of outliers. Actually, outliers can produce spurious
modes. In the presence of spurious modes, outliers self-validate themselves,
as they can not be declared unlikely with respect to the cluster they have given
birth to. Finally: how can one say what is unlikely, with respect to a cluster
which can take any shape? In the following, a robust-to-outliers counterpart of
the Kernel Mean Shift (KMS, Fukunaga & Hostetler, 1975) for modal detec-
tion is discussed, based on an outlyingness criterion specifically designed for
the considered framework.

2 Methodology

Let X = (x1,x2, . . . ,xn) be a sample of size n, with xi ∈ Rd , d ≥ 1. A kernel
density estimator is given by f̂ (x) = 1

n ∑n
i=1 KH(x− xi) where KH(x) is a d-

variate kernel function scaled by a symmetric positive definite d×d bandwidth
matrix H. KMS is an iterative algorithm to identify modal clusters from a
kernel density estimate of a set of data. The algorithm recursively shifts each
data point to a local weighted mean mK,H ,

mK,H

(
x( j)

)
= x( j+1)− x( j) =

∑n
i=1 x( j)

i ∇KH(x)
(

x− x( j)
i

)

∑n
i=1 ∇KH(x)

(
x− x( j)

i

) ∝
∇ f̂

(
x( j)

i

)

f̂
(

x( j)
i

) .

until convergence. The weights are normalized gradient vectors of the kernel
function. Hence, the mean shift is a gradient ascent algorithm based on a
normalised kernel estimator of the gradient.

We propose a robust counterpart of KMS based on impartial trimming
(Cuesta-Albertos et al., 1997). The methodology, summarised in Algorithm
1, climbs iteratively via KMS the modes of a trimmed kernel density estimate,
obtained by discarding at each iteration a fixed proportion α of data with the
lowest densities with respect to the pertaining cluster. Then, the identified clus-
ters allow to update the outlyingness score of each observation and run KMS
on a renewed active set. Iterations stop as the trimmed set is not updated.
The procedure is impartial since the detection of the trimmed points is a result
of the procedure jointly with cluster assignments and it recasts to a trimmed
KMS (tKMS). The initial active subset I (0) can be obtained as follows: (a)
consider an over-smoothed fitted density; (b) select a proportion of points with
the largest fitted densities.



182

Algorithm 1 Iteration r of tKMS
Optimization Step
Evaluate the kernel density estimate over the active set I (r) of size n−⌊nα⌋

f̂ (r)(x) =
1

n−⌊nα⌋ ∑
i∈I (r)

KH(x− xi)

Run KMS to identify the modes of f̂ (r)(x), and get a partition of X in clusters{
C (r)

m

}

m
, each with cardinality n(r)m

Let m = mi if xi ∈ C (r)
m

Trimming Step
Compute ĝ(r)i = ĝ(r)mi (xi), i = 1,2, . . . ,n with

ĝ(r)m (x) =
1

n(r)m
∑

xi∈C (r)
m

KH(x− xi)

Update I (r+1) by ruling out from X the ⌊nα⌋ points with the lowest of ĝ(r)i .

3 Examples

We illustrate the effectiveness of the proposed methodology, as well as the
drawbacks of classical KMS in the presence of contamination, through some
synthetic examples. Figure 1 gives the results from running both KMS and
tKMS on a pair of bivariate data structured in three clusters in the presence
of background noise. While essentially identifying the true clusters, in both
examples KMS also detects spurious modes, wheres tKMS recovers the under-
lying clustering structure and trimmed points are not assigned to any cluster.
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points are identified in black.
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ABSTRACT: Disk diffusion tests are employed to determine the susceptibility of
bacteria to antibiotics by measuring the zone diameter (ZD) of inhibition. Previous
work suggested to use a composite model when modeling minimum inhibitory con-
centration measurements. This model combines a parametric distribution covering the
range of observations from the susceptible component with a non-parametric distri-
bution capturing the range of observations containing also resistant observations. We
investigate the use of this model for ZD data and also consider a two-component mix-
ture model combining the parametric distribution with the non-parametric distribution
relaxing the split of the support for both distributions. We present maximum likeli-
hood and penalized maximum likelihood estimation of both models using a normal or
a skew-normal distribution as parametric distribution while taking the restricted sup-
port and the rounding of the data into account. We illustrate the use of these models
in a simulation study on artificial data and on data available from the web page of the
European Committee on Antimicrobial Susceptibility Testing (EUCAST).

KEYWORDS: antibiotic susceptibility, composite model, disk diffusion test, mixture
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ABSTRACT: In social sciences, studies are often based on questionnaires asking par-
ticipants to express ordered responses several times over a study period. We present a
model-based clustering algorithm for such longitudinal data. Assuming that an ordi-
nal variable is the discretization of a underlying latent continuous variable, the model
relies on a mixture of matrix-variate normal distributions, accounting simultaneously
for within- and between-time dependence structures. An EM algorithm is considered
for parameter estimation. An evaluation of the model through synthetic data show its
estimation abilities and its advantages when compared to competitors. A real-world
application concerning preferences for grocery shopping during the Covid-19 pan-
demic period in France will be presented.

KEYWORDS: Ordinal data, longitudinal data, clustering, matrix variate distribution,
EM algorithm

1 The data

Let denote by yi, j,t the observation of the j-th ordinal variable for the i-th unit
at time t (i = 1, ...,N; j = 1, ..,J and t = 1, ...,T ). The categories of the j-th or-
dinal variable are quoted by 1 to Cj. The data are organized in a random-matrix
form such that Y = {Yi}N

i=1 is a sample of J×T -variate matrix observations:

Yi =

⎛

⎜⎜⎜⎜⎜⎝

yi,1,1 · · · yi,1,t · · · yi,1,T
...

. . .
... · · ·

...
yi, j,1 · · · yi, j,t · · · yi, j,T

... · · ·
...

. . .
...

yi,J,1 · · · yi,J,t · · · yi,J,T

⎞

⎟⎟⎟⎟⎟⎠

2 Latent Gaussian distribution for ordinal variable

We assume that each variable yi, j,t is the manifestation of an underlying la-
tent continuous variable zi, j,t which follows a Gaussian distribution. At this



186

point, we can assume that each observed ordinal matrix Yi is indeed the man-
ifestation of a latent continuous random matrix Zi ∈ RJ×T , which follows a
matrix-normal distribution M N (J×T )(M,Φ,Σ), where M ∈ RJ×T is the ma-
trix of means, Φ ∈ RT×T is a covariance matrix containing the variances and
covariances between the T occasions or times and Σ ∈ RJ×J is the covariance
matrix containing the variance and covariances of the J variables. The matrix-
normal probability density function (pdf) is given by

f (Z|M,Φ,Σ) = (2π)−
T J
2 |Φ|−

J
2 |Σ|−

T
2 exp

{
−1

2
tr[Σ−1(Z −M)Φ−1(Z −M)ᵀ]

}
.

To map from Yi to Zi, let γ j denote a Cj+1-dimensional vector of thresholds
that partition the real line for the j-th ordinal variable that has Cj levels and
let the threshold parameters be constrained such that −∞ = γ j,0 ≤ γ j,1 ≤ ... ≤
γ j,Cj = ∞. If the latent zi, j,t is such that γ j,c−1 < zi, j,t < γ j,c then the observed
ordinal response, yi, j,t = c.

3 Model-based clustering

When data are heterogeneous, mixture model is an efficient way to perform
clustering. In the present case, we consider Mixture of Matrix-Normals (MMN,
Viroli, 2011). As usually for mixture models, parameter estimation is done us-
ing an EM algorithm. The number of cluster is selected using the BIC criterion.

4 Applications

An evaluation of the model through synthetic data show its estimation abilities
and its advantages when compared to competitors. A real-world application
concerning preferences for grocery shopping during the Covid-19 pandemic
period in France will be presented.
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ABSTRACT: Do prominent data mining methods in computer science have anything
in common with well-established techniques in statistics? Are there any benefits in
combining methods from statistics with those from computer science, and if yes, why
do we gain such benefits? These and further aspects are approached at the interface
between computer science and statistics.

This talk first provides a brief introduction to the clustering and dimensionality re-
duction tasks from a computer science perspective. Furthermore, a brief introduction
to the manifold learning task is given. This foundation is followed by an elaboration
on similarities and distinct properties between two seemingly different tasks from dif-
ferent domains (cs and statistics), more specifically the subspace clustering and the
manifold learning task.

Pursuing this path on the interface between computer science and statistics, it is
elaborated on endeavors of enhancing cluster analysis through manifold learning while
investigating why the combination of two methods from different domains (clustering
and manifold learning) results in a symbiotic relationship.

In conclusion, this talk aims to sketch selected examples of the potential synergies
that can emerge on the interface of computer science and statistics in the context of
data mining and machine learning including its challenges and benefits. The examples
in this talk do not only target a formal level but also the interdisciplinary experiences
gained in collaborations between statisticians and computer scientists encouraging fu-
ture endeavors between both scientific domains.
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ABSTRACT: Classifying gene expression profiles can be challenging due to their low
sample size and high dimensionality. Existing methods employed often lack inter-
pretability or sparsity, and require extensive data preprocessing. Ensemble methods,
such as the Set Covering Machine, enable the construction of classifiers depending
only on base classifiers. We propose two novel base classifiers that consider rela-
tions between features for constructing interpretable decision functions, denoted fold
change classifiers. Here, an intrinsic feature selection and a straightforward seman-
tic and syntactic interpretation can be achieved. The proposed classifier no longer
depends on equally scaled data since relative measurements within a sample are con-
sidered. The applicability of the proposed method is shown in a case study evaluating
neuroendocrine tumors.

KEYWORDS: ensemble method, molecular high-dimensional data, set covering ma-
chine, fold changes, neuroendocrine tumors

1 Introduction

Classification in light of potentially formulating biological hypotheses often
entails classifying high-dimensional data, where the number of samples is
greatly outnumbered by the number of dimensions of each sample (Lausser
& Kestler, 2013; Marchand & Shah, 2004). Each dimension of a sample is
referred to as a feature, and finding distinctions between samples, that only de-
pend on a subset of features, might lead to the formulation of novel biological
hypotheses (Lausser & Kestler, 2013; Marchand & Shah, 2004). Moreover,
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discarding irrelevant features can be considered essential in order to obtain
sparse and interpretable classifiers, with high generalization abilities (Marc-
hand & Shah, 2004).
The Set Covering Machine (SCM), enables the construction of a sparse con-
junction of base classifiers (Marchand & Shawe-Taylor, 2003), performing an
intrinsic feature selection when using a single threshold on one feature as a
base classifier. Previous work in this context and these types of classifiers
has been done mainly by (Marchand & Shawe-Taylor, 2003, Valiant, 1984,
Haussler, 1988), and more recently by others (Drouin et al., 2016; Drouin
et al., 2019; Lausser & Kestler, 2013; Schmid et al., 2013; Kestler et al., 2006;
Lausser et al., 2020). A resulting interpretable decision function can be of the
form ”IF f1 ≥ 5 AND f2 < 8 THEN the sample belongs to class . . . ”, with f1
and f2 being features / genes.
When analyzing high-throughput expression profiles the mere over- or under-
expression of single genes might not suffice to identify biologically relevant
genes (Shi et al., 2005). Therefore, considering relations between different
gene expressions, by pairwise comparing expressions could lead to the iden-
tification of global behaviors and point to biological processes involved (Shi
et al., 2005). This motivates base classifiers of type f1 < f2 or f1/ f2 ≥ t where
t is a threshold, relating the two features considered. These base classifiers may
be less susceptible to noise, as well as exhibit invariance properties (Lausser &
Kestler, 2013). This allows the discovery of similar tendencies among different
samples, without depending on identical nomalization of the data.

2 Results

Contrary to the originally published SCM, which constructs a classifier de-
pending on a subset of provided samples (Marchand & Shawe-Taylor, 2003),
we are able to construct a sparse classifier, depending only on a subset of fea-
tures, while eliminating concerns about normalization and data-preprocessing.
Due to the interpretable decision functions, learnt by our proposed method, a
genotype-to-phenotype relation can be established, potentially revealing novel
biological mechanisms.
We employed the proposed method in a case study dealing with pancreatic neu-
roendocrine tumours (PanNETs). PanNETs are rare but quite heterogeneous
tumour entities lacking specific biomarkers for disease progression. The re-
sulting decision function, an ensemble of order relations, is sparse and yields
perfect reclassification contrary to other classification methods employed on
this data. Here, the gene relations involved in the decision functions could be
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validated via a literature search, suggesting mechanistic interactions to be fur-
ther investigated. The restriction to the evaluation of order relations reduces
the gained flexibility of the presented base classifiers. This can be further vali-
dated by the sparsity of the decision function, implying that the base classifier
involved carry much information.
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ABSTRACT: The talk will present model based clustering methods to classify units
based on so called multivariate mixed type longitudinal or panel data. The multivariate
aspect of data points to the situation when more than one outcome is observed for each
unit within a longitudinal study at each measurement occassion. The mixed type data
then arise in situations when such multivariate outcomes are not necessarily of the
same type, e.g., some of them are numeric, some of them categorical. The talk will
provide an overview of clustering approaches for such data developed by author over
past about 10 years, partly in cooperation with Lenka Komárková, Jan Vávra, Bettina
Grün and Gertraud Malsiner-Walli.
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1 Introduction

In different types of studies data are nowadays routinely gathered repeatedly
over time on the same units leading to longitudinal or panel data. On top of
that, multiple outcomes, both numeric and categorical, i.e., of a mixed type, are
recorded at each measurement occasion leading to multivariate longitudinal
data of a mixed type. An important area of interest is how to suitably model
and analyze this kind of data if unobserved heterogeneity is suspected. In
this case a statistical method is frequently required which forms homogeneous
groups of similar units in the study population and develops a classification
rule on how to classify not only available but perhaps also future units into
those groups using the same type of data.

2 Notation

We are assuming that a dataset suitable for analysis by methods presented in
this talk is composed of N units which we want to classify into K > 1 groups,
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where K, the number of groups, is not necessarily known in advance. We are
further assuming that the aim is to classify the units into the groups on basis of
R ≥ 1 of longitudinally gathered outcomes (being possibly of a mixed type).
Let for i = 1, . . . ,N and r = 1, . . . ,R, Yi,r =

(
Yi,r,1, . . . , Yi,r,ni

)
denote a vector

of the values of the rth outcome of the ith unit obtained at ni occasions at
times ti =

(
ti,1, . . . , ti,ni

)
. Further, let vi,r,1, . . . , vi,r,ni be vectors of additional

covariates that may explain random fluctuation of the outcomes Yi,r we may
want to adjust for in the classification procedure. These additional covariates
are also allowed to be both numeric and categorical. They may include char-
acteristics that are constant over time for a given unit but may also be time
dependent. Furthermore, let Ci,r =

{
ti, vi,r,1, . . . , vi,r,ni

}
denote both the mea-

surement times and the covariate values for the rth outcome of the ith panel
member. Finally, let

Yi =
(
Yi,1, . . . , Yi,R

)
, Ci =

{
Ci,1, . . . , Ci,R

}

denote all information (outcomes and covariate values) available for the ith
unit that can be used in the data analysis and exploited for the classification of
the units into one of the K groups.

By the fact that the outcomes are of a mixed type, we consider a situation
that for different values of r, the elements of the vectors Yi,r are possibly of
a different type. Some of them might be numeric, some of them counts, binary,
ordinal or general multinomial. This reflects a common practical situation
of gathering multiple outcomes of different nature in one longitudinal study.
Finally, it is obvious that the elements of the vectors Yi cannot be assumed to
be independent and some modelling of the dependence structure is a must with
any realistic modelling approach.

3 Model based clustering

In the talk, several model based clustering approaches developed in Komárek
& Komárková, 2013, Komárek & Komárková, 2014, Vávra & Komárek, 2022
and Vávra et al., 2023 will be presented for data having the structure outlined
in Section 2. The model behind all clustering procedures is a sort of the mix-
ture of (generalized) linear mixed models. Unknown model parameters are
estimated using the Bayesian approach and the Markov chain Monte Carlo
(MCMC) methodology. Furthermore, related R software routines will also be
discussed. Finally, we show on how to perform not only clustering of units
based on available data but also how to classify a new observation into one of
the clusters.
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ABSTRACT: Motivated by classification issues in marine studies, we propose a hid-
den semi-Markov model to segment toroidal time series according to a finite number
of latent regimes. The time spent in a given regime and the chances of a regime-
switching event are separately modeled by a battery of regression models that depend
on time-varying covariates.
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1 Introduction

Bivariate sequences of angles are often referred to as toroidal time series, be-
cause the pair of two angles can be represented as a point on a torus. Examples
include time series of wind and wave directions and time series of turning an-
gles in studies of animal movement.

We introduce a nonhomogeneous, toroidal hidden semi-Markov model
(HSMM) that segments toroidal time series. Precisely, the distribution of
toroidal data is approximated by a mixture of toroidal densities, whose param-
eters evolve according to a latent semi-Markov process with covariate-specific
dwell times.

Our proposal extends previous approaches that are based on toroidal hid-
den Markov models (Lagona & Picone, 2013). Under a toroidal hidden Markov
model, the sojourn times of the states of the latent process are distributed ac-
cording to a geometric distribution. Our proposal relaxes this restrictive as-
sumption by replacing the latent Markov chain with a latent, nonhomogeneous
semi-Markov model, where the (non necessarily geometric) time spent in a
given regime and the chances of a regime-switching event are separately mod-
eled by a battery of regression models that allow the introduction of covariates.
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2 A toroidal hidden semi-Markov model

Let yyy = (yyyt , t = 1, . . .T ) be a bivariate time series, where yyyt = (yt1,yt2) is a vec-
tor of two circular observations. Further, let uuu = (uuut , t = 1, . . .T ) be a sequence
of latent multinomial random variables uuut = (ut1 . . .utK) with one trial and K
classes (or states), whose binary components represent class membership at
time t. Our proposal is a hierarchical model where the joint distribution of the
time series is obtained by

f (yyy) = ∑
uuu

f (yyy | uuu)p(uuu).

The joint distribution p(uuu) of the latent process is described by extending
the notion of a Markov chain. If u is a Markov chain, then p(uuu) is fully known
up to a vector of K initial probabilities πk =P(u1k = 1),k = 1, . . . ,K,∑k πk = 1,
and a K ×K matrix of transition probabilities

⎛

⎜⎜⎝

π11 π12 . . . π1K
π21 π22 . . . π2K
. . . . . . . . . . . .
πK1 πK2 . . . πKK

⎞

⎟⎟⎠=

⎛

⎜⎜⎝

1− p1 p1ω12 . . . p1ω1K
p2ω21 1− p2 . . . p2ω2K
. . . . . . . . . . . .

pKωK1 pKωK2 . . . 1− pK

⎞

⎟⎟⎠

where pk = ∑k′ ̸=k πkk′ is the probability of a transition from k to a different
state and ωkk′ is the conditional probability of a transition to state k′ ̸= k, given
a transition from state k. Under this setting, if the process is in state k, the time
τk up to a transition to a different state is geometric

P(τk = τ) = pk(1− pk)
τ−1. (1)

More generally, let Sk(τ) = P(τk > τ) = exp
(
−
∫ τ

0 hk(v)dv
)

be the survival
function of τk, where hk(τ) is the associated hazard function. Then

pk(τ) = P(τk ≤ τ+1 | τk > τ) = 1− exp
(
−
∫ τ+1

τ
hk(v)dv

)
,

is the conditional probability of a transition at time t+1, given that the process
has been in state k during a period of length t. Then

P(τk = τ) = pk(τ)
τ−1

∏
i=1

(1− pk(τ)). (2)
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When the hazard hk is time-constant, then (2) reduces to (1). Alternatively, (2)
can be approximated with the desired accuracy by

P(τk = τ) = pk(m)(1− pk(m))τ−m
m−1

∏
i=1

(1− pk(i)). (3)

Parametric hazard functions can be borrowed from the survival analysis liter-
ature and some of them are conveniently associated to a link function g that
trasforms pk(τ) to a linear function of time, say g(pk(τ)) = β0k +β1kτ. Such
a specification can be further extended by introducing a vector of q (possibly
time-varying) covariates, say xxxt , which influence the dwell time distribution

g(pk(τ;xxxt)) = β0k +β1kτ+ xxxTt βββ. (4)

Similarly, covariates may be introduced to shape the conditional transition
probabilities, say ωkk′ = ωkk′(xxxt), through a multinomial regression equation.
The introduction of time-varying covariates makes the latent process nonho-
mogeneous, extending recent literature proposals.

Our proposal is completed by a conditional independence assumption on
the observation process. Precisely,

f (yyy | uuu) =
T

∏
t=1

K

∏
k=1

m

∏
i=1

f (yt ;θθθk)
utki , (5)

where θθθ1, . . .θθθK is a sequence of unknown parameters. Parametric toroidal
densities can be borrowed by the proposals available in the directional statis-
tics literature. A convenient specification is for example the bivariate wrapped
Cauchy distribution (Kato & Pewsey, 2015). It is unimodal, pointwise sym-
metric and has a closed-form expression for the conditional distribution. A
single dependence parameter controls the relationship between the two com-
ponent circular variables, ranging from independence to perfect correlation.
The remaining four parameters respectively indicate the two marginal means
and concentrations.

3 Results

Figure 1 shows the results obtained on a time series of T = 1326 semi-hourly
wind and wave directions, taken in wintertime by the buoy of Ancona, which
is located in the Adriatic Sea at about 30 km from the coast. A 2-state hidden
semi-Markov model has been used to segment the data. The model integrates
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Figure 1. Left: toroidal data clustered within state 1 (black) and state 2 (red). Right:
state-specific dwell time distribution at baseline.

bivariate wrapped Chaucy densities with dwell time regressions that depend
on a baseline Gompertz hazard rate and a time-varying covariate, the fetch.
The fetch is the closest coastal point following the direction from which the
wave comes from and it is computed here by cyclical cubic smoothing splines
(Wood, 2017) that appropriately smooth distances across the Adriatic basin.

The model successfully segments the observations according to two clus-
ters, and offers a clear-cut indication of the distribution of the data under each
regime. Under state 1, winds appear well syncronized with waves. Under state
2, wind and wave directions are essentially independent. Under state 1, the tail
of the baseline dwell time distribution is larger than that one estimated under
state 2, indicating that state 1 is more persistent than state 2. The regression co-
efficient of the fetch is equal to -1.38, indicating that the longer is the distance
from the coast, the smaller is the probability of a state transition.
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ABSTRACT: In empirical research involving latent Markov models, there is a ten-
dency of research communities building up expertise on one particular class of such
models, then shoehorning any given data set into that very model formulation. This
talk attempts to overcome this myopia by offering a unifying view on what otherwise
are often considered completely separate model classes — from hidden Markov mod-
els to Cox processes — thereby providing guidance as to how a latent Markov model
formulation can be suitably tailored to the data at hand.
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1 Introduction

Over the last two decades, latent Markov models* have taken applied research
by storm. This success story can be explained by their intuitive appeal, their
mathematical tractability, and the various types of inference they allow for.
Yet, while empirical researchers are well-acquainted with the various flavours
of regression, the same cannot be said for latent Markov models. Instead, a
tendency can be recognised that researchers focus on building expertise on
one particular type of such models, and then shoehorn any given data set into
the model they happen to know best.

The challenge of identifying a suitable model formulation for a given data
set primarily concerns two choices to be made: whether to use a discrete-time
or a continuous-time model formulation, and whether to assume a discrete
or a continuous state space. Classifying different model classes along these
two dimensions, we provide an overview of the most relevant classes of latent

*i.e. stochastic process models for sequential data driven by latent Markovian processes;
note these may also be referred to as, inter alia, state-space models, hidden Markov models,
doubly stochastic processes, or dependent mixture models — we use the label “latent Markov
model” as it appears to be a good umbrella term for all special cases considered in this paper
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Markov models and emphasise that the inferential methods for these different
classes are for the most part effectively identical, such that there is no reason
why researchers should focus on any one class of these models.

2 Overview of latent Markov model formulations

Table 1 attempts to classify the main types of latent Markov models accord-
ing to the type of states, either discrete or continuous, the observed process
is assumed to be driven by, and the role of time, i.e. the mathematical opera-
tionalisation of the times at which the sequential observations are made.

Table 1. Classification of six popular classes of latent Markov models according to
the respective role of time and space.

discrete states continuous states
discrete time (A) (basic) hidden (B) (basic) state-space

Markov model model

continuous time, (C) continuous-time (D) continuous-time
non-inform. obs. times hidden Markov model state-space model

continuous time, (E) Markov-modulated (F) Cox process
inform. obs. times Poisson process

The simplest case (A) arises when the states are discrete and the process is
modelled in discrete time, i.e. as a time series {Xt}t=1,...,T . In its basic depen-
dence structure, the corresponding hidden Markov model (HMM) is defined by
an N–state homogeneous Markov chain {St}t=1,...,T as the state process, spec-
ified by the initial distribution δ =

(
δ1, . . . ,δN

)
, δi = Pr(S1 = i), and the N×N

transition probability matrix Γ = (γi j), as well as the N emission distributions
f1(xt), . . . , fN(xt), which are selected by the state process. An intuitive exam-
ple is animal movement, where the observations x1, . . . ,xT could be the hourly
step lengths of an animal and the states the behavioural modes (cf. Beumer
et al., 2020). HMMs are mathematically tractable, as recursive techniques can
be used for likelihood evaluation, state decoding, and forecasting.

In many settings, it will however not be reasonable to assume that the state
process {St} is discrete-valued. For example, the volatility underlying share
returns evolves gradually over time. In such cases, it is more adequate to model
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the discrete-time state process {St}t=1,...,T as an autoregressive process,

st = φ(st−1 −µ)+µ+σεt , εt
iid∼ N(0,1),

with long-term mean µ ∈ R, persistence parameter −1 < φ < 1 and standard
deviation σ > 0 of the error process, and with the distribution of xt in some
way depending on st . Such a model is commonly referred to as (B) state-space
model (SSM), and there are many different techniques for estimating the as-
sociated parameters, ranging from the Kalman filter to MCMC-based methods
(Auger-Méthé et al., 2021). While this plethora of estimation techniques can
be intimidating for practitioners, it is worth pointing out that SSMs can conve-
niently be approximated using HMMs with a large state space.

Basic HMMs or SSMs both need to be modified when the intervals be-
tween observation times are not of the same length. Such temporally irregular
sampling schemes are quite common for example in medical or survey data.
If in such cases a discrete state space seems adequate, then {St}0≤t≤T can be
modelled as a continuous-time Markov chain, specified by the infinitesimal
generator matrix Q = (qi j), with state transition intensities

qi j = lim
∆t→0

Pr(st+∆t = j | st = i)
∆t

,

leading to (C) a continuous-time HMM. If instead the states ought to be mod-
elled as continuous-valued, then a stochastic differential equation (SDE) can
be used, e.g. the Ornstein-Uhlenbeck process

dst = θ(µ− st)dt +σdwt ,

where wt is the Brownian motion and θ > 0 controls the strength of rever-
sion to the long-term mean µ. Such a model would most naturally be labelled
(D) a continuous-time SSM. For inference, recursive techniques similar to the
discrete-time case are available (Jackson et al., 2003; Mews et al., 2022b).

Finally, we need to distinguish cases where the observation times them-
selves are informative, e.g. in medicine, when longitudinal observations are
made whenever a patient goes to a doctor, likely indicating sickness. In such
cases, (E) Markov-modulated Poisson processes (MMPPs) can be used to model
a system traversing through a finite state space, with the observation times
modelled as a Poisson arrival process with rate λst depending on the state st
currently active. Such a model can be further extended by including marks, say
for modelling biomarkers measured at each consultation (Mews et al., 2022a).
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If assuming only finitely many states of such a process is inadequate, then the
continuous-time Markov chain model for {St} can again be replaced by an
SDE, leading to the class of (F) Cox processes.

3 Conclusion

By classifying latent Markov models according to the assumptions made con-
cerning time and (state) space, we promote a more unified view on what other-
wise are often considered fairly separate model classes. This categorisation is
far from perfect — for example, as it stands it does not have a place for SDEs
driven by latent states — however, we hope that it can provide some guidance
for empirical researchers when making their modelling decisions. The main
point we are trying to make is that “you should model the process that gives
rise to the data, not shoehorn the data into a model you happen to have at hand”
(quote by David L. Borchers, pers. communication) — and to be able to do the
former, it is important to have a big picture view of the model classes available.
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ABSTRACT: In this article we introduce multilevLCA - an R package for efficient
estimation of single-level and multilevel latent class models with covariates.

KEYWORDS: Multilevel latent class analysis, R package, two-step estimation.

1 Introduction

Latent class (LC) analysis is to create a discrete classification of units based
on a set of observed variables, which are taken as observed indicators of an
unknown nominal variable with some number of latent classes. Multilevel
LCA has been developed to account for hierarchical data structures, i.e., when
lower-level units are nested within higher-level ones (e.g., survey respondents
nested within countries, pupils within schools). The multilevel LC model can
be extended to allow for external covariates as predictors of class membership.

The general recommendation for fitting single-level and multilevel LC
models with covariates is to use stepwise estimators. In particular, the two-step
(Di Mari et al., 2023) and two-stage approaches (Bakk et al., 2022) for mul-
tilevel LCA, and the two-step approach for single-level LCA (Bakk & Kuha,
2018) have some attractive properties with respect to model construction, and
estimation efficiency and algorithmic stability.

In the current paper we introduce the R package multilevLCA - the first
to implement two-step estimation, in a functional and user-friendly way, for
single-level and multilevel latent class analysis with covariates.
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2 Modelling framework

Let Yi jh denote the observed response of low-level unit (individual) i in high-
level unit (group) j = 1, . . . ,J on the categorical indicator variable h= 1, . . . ,H.
The full response vector for the same unit is denoted Yi j = (Yi j1, . . . ,Yi jH). For
simplicity of exposition, we focus below on dichotomous indicators, with a
conditional Bernoulli distribution, P(Yih = yih|Xi = t) = φyih

h|t(1−φh|t)
1−yih .

Let Wj be a group-level latent class variable, with possible value m =
1, . . . ,M, and probabilities P(Wj = m) = ωm > 0. Given a realization of Wj, let
Xi j be a individual-level latent class variable, with possible values t = 1, . . . ,T ,
and conditional probabilities P(Xi = t|Wj = m) = πt|m > 0.

We assume that individual response probabilities are conditionally inde-
pendent from each other given low-level class membership (the classical local
independence assumption). We further assume that individual response prob-
abilities depend on high-level class membership only through Xi j (a common
assumption in multilevel LCA; Vermunt, 2003; Lukociene et al., 2010). Then,
an unconditional multilevel LC model for Yi j can be specified as follows:

P(Yi j) =
M

∑
m=1

P(Wj = m)
T

∑
t=1

P(Xi j = t|Wj = m)
H

∏
h=1

P(Yi jh|Xi j = t). (1)

High-level and low-level covariates can be included in order to predict
class membership. Let Zi j = (1,Z′

1 j,Z′
2i j)

′ be a vector K covariates, with the
sub-vector Z′

1 j being defined at the high level, and Z′
2i j being defined at the

low level. Let Z∗
1 j = (1,Z′

1 j)
′. For high-level and low-level latent class mem-

bership, respectively, we consider the multinomial logistic models

P(Wj = m|Z∗
1 j) =

exp(α′
mZ∗

1 j)

1+∑M
l=2 exp(α′

lZ∗
1 j)

, (2)

P(Xit = t|Wj = m,Zi j) =
exp(γ′tmZi j)

1+∑T
s=2 exp(γ′smZi j)

, (3)

In Equation (2), αm are regression coefficients for m = 2, . . . ,M, and m =
1, . . . ,M. In Equation (3), γtm is a vector of regression coefficients for each
t = 2, . . . ,T . When only the intercept is included in Equation (2), or (3), the
corresponding vector of regression coefficients is equal to the log-odds of the
class proportions (i.e., log(ωm/ω1), or log(πt|m/π1|m)).
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In addition, we assume that the observed indicators Yi jh are conditionally
independent from the covariates given low-level class membership. Thus, the
multilevel LC model for P(Yi j|Zi j) can be written as:

P(Yi j|Zi j) =
M

∑
m=1

P(Wj = m|Z∗
1 j)

T

∑
t=1

P(Xi j = t|Wj = m,Zi j)
H

∏
h=1

P(Yi jh|Xi j = t).
(4)

The class profiles are defined by the measurement parameters φh|t , πt|m,
and ωm. The other parameters of interest are the structural parameters αm,
and γtm. It is straightforward to reduce the multilevel LC structural model in
Equation (4) to the multilevel measurement model, the single-level structural
model, or the single-level measurement model.

3 Estimating the multilevel LC model in multilevLCA

The default estimator of Equation (4), in the R package multilevLCA, is the
two-step approach (Di Mari et al., 2023). We add that future versions of the
package will relax the assumptions of Equation (4) to allow for local dependen-
cies. Other options are the two-stage (Bakk et al., 2022) and the simultaneous
approaches. A basic function call requires the following arguments:

• data The input data (matrix or data frame)
• Y The names of the item columns
• iT The number of low-level latent classes
• id_high The name of the high-level id column
• iM The number of high-level latent classes
• Z The names of the low-level covariates columns
• Zh The names of the high-level covariates columns

Estimation is performed via the function multiLCA,

out = multiLCA(data,Y,iT,id_high,iM,Z,Zh)

The list out contains a lot of information about class profiles, structural
parameters, and estimation details. A summary of this information can be
printed by executing out in the prompt. To create a plot of the response prob-
abilities, the user types plot(out) in the prompt.
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In practice, the number of low-level and high-level classes is unknown to
the researchers. Selecting these values is a distinct, yet fundamental task. The
multilevLCA package includes two state-of-the art model selection strate-
gies, namely sequential model selection (Lukociene et al. 2010) and simultae-
nous model selection. Both approaches implement the BIC selection criterion
on low and high level, reporting also the AIC and ICL BIC.

To implement the former, iT and (or) iM is replaced by a range of val-
ues. The latter is implemented in the same way, but with the extra argument
sequential set to FALSE. For example, to perform simultaneous model
selection over 1-4 low-level classes, and 3-4 high-level classes, we execute the
following call:

out = multiLCA(data,Y,iT=1:4,id_high,iM=3:4,
sequential=FALSE)

The list out contains the model estimation results as if the selected specifi-
cation had been estimated directly. Note that specifying Z and Zh is redundant;
in multilevLCA, model selection is always performed without covariates.

The tools for model selection, and visualization are available for any LC
model, i.e., the multilevel structural model, multilevel measurement model,
single-level structural model, and single-level measurement model.
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ABSTRACT: Methods to handle common data problems for longitudinal hidden Markov
models are presented. A missing data mechanism that assumes state-dependent and
variable dependent missingness is introduced. High dimensionality is controlled for
with the use of an explicit dimension reduction algorithm.
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1 Introduction

Hidden Markov models (HMMs) are dependent mixture models wherein
the unobserved process is governed by a Markov process. Traditionally HMMs
are used to model time series data and recently have been used to model the
movement of subjects across time, i.e., longitudinal data. Due to the abundance
of multivariate longitudinal data arising from clinical studies, HMMs have be-
come increasingly useful to the health sciences. This data type, however, is
commonly plagued by missing data as individuals miss visits or drop-out of
studies. Classically, we account for missing data through one of two means:
the inclusion of only individuals with complete data or variable mean imputa-
tion. Both of which can introduce bias into analysis results due to reduction in
the information provided or by distorting the information provided. Alternative
to these pre-processing missing data methods, is the use of model fitting algo-
rithms that can be altered to handle missing data at each iteration. One such
algorithm is the expectation-maximization (EM) algorithm (Dempster et al.,
1977). We adopt this approach and develop a modified EM for longitudinal
HMMs with informative missing data. In addition to missing data, approaches
for handling high dimensionality and uninformative variables must be devel-
oped for longitudinal HMMs. Many implicit and explicit dimension reduc-
tion methods exist for independent mixture models. We focus on explicit di-
mension reduction, and extend the vscc algorithm (Andrews & McNicholas,
2014) to longitudinal HMMs.
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2 Background

2.1 Longitudinal hidden Markov models

Longitudinal hidden Markov models contain an unobservable first-order
Markov chain Sit , i = 1, ...,n, t = 1, ..,T and an observed process Yit represent-
ing the response vector of individual i at time t. The simplest model of this
kind can by summarized by

Pr(St
i1|St−1

i1 ) = Pr(St |St−1), i = 1, ...,n, t = 2,3, ...,T (1)

Pr(Yit |Yt−1
i1 ,St

i1) = Pr(Yit |Sit), i = 1, ...,n, t = 1,2, ...,T (2)

where St
i1 represents the history of the unobserved parameter process for in-

dividual i, from time 1 to time t, with state space S = 1, ...,m,and Yt
i1 repre-

sents the history of the state-dependent process. The HMM parameters in-
clude both the parameters from the Markov chain and the state-dependent
distribution, often taken to be Gaussian. The Markov chain parameters in-
clude the transition matrix Γ where γit jk = P(Sit = k|Sit−1 = j) and the initial
probabilities δ where δi j = P(Si0 = j). The simplest model assumes homo-
geneity, thus γit jk = γ jk and δi j = δ j. To ease calculation of the likelihood,
we introduce forwards and backwards probabilities. The forwards probabili-
ties is defined as such αit( j) = P(Y(t),Sit = j) = δP(Yi1)ΓP(Yi2) . . .ΓP(Yit)
and the backwards probabilities are defined as βit( j) = P(YT

it+1,Sit = j), thus
β⊤

it = ΓP(Yit+1) . . .ΓP(YiT )1⊤. The likelihood is as follows

LT =
n

∏
i=1

δP(Yi1)ΓP(Yi2) . . .ΓP(YiT )1⊤ (3)

and can be redefined with respect to the forwards or backwards probabilities
via LT = ∏n

i=1 αitβ⊤
it or LT = ∏n

i=1 αiT 1⊤.

2.1.1 Model estimation

Various versions of the EM algorithm for HMMs exist, in this paper we
use the Baum-Welch algorithm (Baum et al., 1970; Welch, 2003) to obtain
maximum likelihood estimates. The Baum-Welch algorithm is based on max-
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imization of the complete-data log-likelihood, as seen below

l(ϑ)=
n

∑
i=1

{ m

∑
j=1

ui0 jlogδ j+
T

∑
t=1

m

∑
j=1

m

∑
k=1

vit jklogγ jk+
T

∑
t=0

m

∑
j=1

uit jlog f (yit |Sit = j)
}
.

(4)
The E-step consists of calculating expectations of the missing data, uit j =
P(Sit = j|YT

i1) and vit jk = P(Sit−1 = j,Sit = k|YT
i1,). The M-step consists

of obtaining the maximum likelihood estimates with respect to the expected
complete-data log-likelihood. In particular, the MLE for δ j and γ jk with re-
spect to uit j and vit jk are

δ j =
∑n

i=1 ûi0 j

n
(5)

and,

γ jk =
∑n

i=1 ∑T
t=1 v̂it jk

∑n
i=1 ∑T

t=1 ∑m
k=1 v̂it jk

. (6)

Additionally, the state-dependent distribution parameters are estimated in the
M-step, based on the assumed distribution.

2.2 Missing data

Missing data for model-based clustering is a well studied problem, begin-
ning with Eirola et al. (2014). The data is first partitioned into the observed
and unobserved parts as such (Yo

i ,Ym
i ). By assuming the joint distribution of

the missing and observed part to be Gaussian, we can obtain the conditional
distribution of the missing part given the observed part as

(Ym|Yo)∼ N (µm +ΣmoΣ−1
oo (Yo −µo),Σm|o) (7)

(Anderson, 2003). Based on these assumptions the conditional expecta-
tion of the missing data and the conditional covariance matrices can be deter-
mined and used in the EM algorithm to account for missingness. We extend
this method to longitudinal HMMs and add in methods to handle informative
missingness.

2.3 Variable selection

The vscc algorithm, proposed by Andrews & McNicholas (2014), selects
variables based on minimization of within-cluster variance and correlation to
the set of selected variables. The vscc algorithm tends to be much faster and



213

perform better than step-wise variable selection methods where model fitting
occurs at every inclusion/exclusion step.

3 Methodology

Similar to Sportisse et al. (2021), we modify the Baum-Welch algorithm
to allow for state-dependent and variable-dependent missingness. We do so by
adjusting the definitions of the forwards and backwards probabilities, which
are then used to update the E and M steps. Additionally, E and M steps are
added to implement conditional mean and covariance imputation and to esti-
mate the missingess parameters.
The modified Baum-Welch algorithm is used within the vscc algorithm, to
allow for simultaneous handling of missing data and uninformative variables.
The mathematical results and full model estimation algorithm will be given in
the full paper, as well as illustrations on real and simulated data
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ABSTRACT: Cluster analysis is a fundamental tool for the study of online communi-
cation. In this contribution we focus on the task of clustering online communication
networks containing images. We provide an overview of the available approaches to
cluster images and how to use image clustering as part of a social data science pro-
cess. Then we present an approach to cluster online communication networks based
on image clustering, that we apply to the study of climate change communication.
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1 Cluster analysis and communication studies

Several online data analysis tasks such as the detection of coordinated inau-
thentic behaviour used to amplify online disinformation and the study of on-
line polarisation and political persuasion require the summarisation of large
numbers of social media posts. Therefore, cluster analysis is a fundamental
tool for the study of online communication.

When we consider the type of data generated by people communicating
online, visual content plays a fundamental role in all the main social media
platforms. Images often carry an important part of the information contained in
a social media post; in general, images are also associated to increased spread-
ing, and can be shared across languages (Joo & Steinert-Threlkeld, 2018;
Magnani et al., 2013). This is true for image-based (Instagram), video-based
(YouTube), and micro-blogging (Twitter) platforms. However, most of the ex-
isting computational studies of online communication, including those based
on clustering methods, have focused only on either the networks of interaction
(e.g. replies and retweets), to discover communities, or the text contained in
social media posts, to compute topic models.
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a cluster collecting identical images, a cluster of images coming from the same
source, and a cluster of images showing pictures from the same event.

Then we present an approach to cluster online communication networks
based on image clustering. This is based our previous work (Vega & Mag-
nani, 2018; Vega & Magnani, 2019) on clustering networks with temporal and
textual information (Figure 2), and consists in applying image clustering to
organise the posted images into groups, assigning a label to each group or
sets of groups to characterise the theme of the interactions, and using these
themes to define thematic multiplex networks of social interactions. In these
networks, edges represent interactions (e.g. replies, or retweets), and each
layer of the multiplex network only includes interactions happened around that
theme. Such networks can themselves be clustered using algorithms for mul-
tiplex networks (Magnani et al., 2021).

Finally, we conclude by showing an application of image-based commu-
nication network clustering to study online visual climate change communica-
tion. This is based on a collection of tweets using the #COPxx hashtag, with xx
being the number of the Conference of the Parties (COP) meeting, e.g. COP21
being the meeting held in Paris in 2015. The objective of this case study is both
to highlight the importance of different features of image clustering methods
within this type of research (e.g. scalability and explainability), and to show-
case the possibilities and limitations of this research design.
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ABSTRACT: Biological networks are representative of the diverse molecular interac-
tions that occur within cells. They model protein-protein interactions, gene regulation,
and metabolic pathways. Among these, metabolic networks are of great interest, as
they directly influence all physiological processes. Exploration of biochemical path-
ways using multigraph representation is essential in understanding complex regulatory
mechanisms. We present a cluster analysis on tissue-specific metabolic networks for
three primary tumor types: breast, lung, and kidney cancer. The metabolic networks
integrate genome-scale metabolic models with gene expression data. We empirically
proved that network clustering could characterize groups of patients in multiple con-
ditions to explore and characterize the metabolic landscape of tumors.

KEYWORDS: biological network ensembles, network summarization, networks clus-
tering.
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ABSTRACT: In artificial neural networks, computational units typically compute a
linear combination of their inputs and then apply a nonlinear filter, often a ReLU,
shifted by some bias. If the inputs come from other units, they have already been
filtered with their own biases. In a layer, multiple units share the same inputs, and each
input is filtered with a unique bias. This results in output values based on shared input
biases rather than individually optimized ones. To address this issue, we introduce
DAC, a new computational unit that incorporates preactivation and multiple biases.
This design allows input signals to undergo independent nonlinear filtering before the
linear combination.
In this short note, we sketch the design of this new computational unit. Full theoretical
support and empirical evidence, suggesting that DAC could be an improved design for
the basic computational unit in neural networks, can be found in Metta et al., 2023.
Code at https://github.com/CuriosAI/dac-dev

KEYWORDS: preactivation, multi-bias, ResNet, dendritic neural model.

1 Introduction

Historically the structure of the perceptron, the artificial neural network’s fun-
damental computational unit, has rarely been questioned. The biological in-
spiration is straightforward: input signals from the dendrites are accumulated

∗ Alessandro Marchetti is a PhD student enrolled in the National PhD in Artificial Intelli-
gence, XXXVII cycle, course on Health and life sciences, organized by Campus Bio Medico
University of Rome.
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at the soma (with a linear combination), and if the result is above the activation
threshold (that is, the opposite of some bias) there is a nonlinear reaction, as
the neuron fires along the axon (with the activation function).

In time the early sigmoid activation function was replaced by ReLU and
variants, and this has brought us to the current situation in which most units
output their signal through a nonlinear activation function which effectively
destroys some information. In fact, ReLU is not invertible, as it collapses to
zero all negative values. Though some of its variants may be formally invert-
ible (ELU Clevert et al., 2016 for example), they overall perform in a way very
similar to ReLU. This suggests that their way of compressing negative values
leads to the same general properties of the latter.

In this note, we describe a radical rethinking of the standard computational
unit, where the output brings its full, uncorrupted information to the next units,
and only at this point is the activation function applied, with biases specialized
for each unit. From the biological point of view, this is like having the activa-
tion at the dendrites instead of at the base of the axon. Thus, we call the new
unit ‘DAC’, for ‘Dendrite-Activated Connection’.

An extended version of this note, with implementation details, an effi-
ciency analysis in terms of parameters and FLOPs, empirical evidence that
DAC provides several benefits with respect to standard units, a theoretical anal-
ysis including a universal approximation theorem, and more, can be found in
the full paper Metta et al., 2023.

2 From standard to DAC units

To describe this paper’s idea, we look at a neural network as a directed acyclic
computational graph. We denote the set of its nodes by I . If i ∈ I is a node,
we denote its parents (in-neighbors) by Ii ⊂ I . In the standard model for
computational units in a neural network, a bias bi, a set of weights wi, j for
j ∈ Ii and a nonlinearity ϕi are associated with every node i. In this paper, ϕi
is always ϕ = ReLU.

Standard model network flow involves updating node i’s value yi using a
nonlinear filter, activation ◦ bias, applied to some information linearly aggre-
gated from node i’s parents:

{
zi = ∑ j∈Ii wi, j y j linear aggregation
yi = ϕ(bi + zi) nonlinear filter

(1)

Figure 1 exhibits this point of view, emphasizing that parent nodes (white
boxes) are themselves filtered with biases and ReLU. For each parent node
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ABSTRACT: A wide range of measures have been proposed to quantify a player’s
marginal contribution to a team. We contributed to this strand of research by propos-
ing, specifically for basketball, a new measure based on a combination of the Shapley
value from game theory and the logistic regression, which is based on considering the
utility of a player in every single lineup. Some applications where the measure can
be useful are presented, such as ranking players, forming lineups, and predicting a
remunerative new contract for free agent players. We also discuss possible ideas for
future research developments.

KEYWORDS: Sports statistics, Shapley value, logistic regression, players ranking,
statistical learning.

1 Introduction & state of the art
Thanks to advancements in technologies and the related increase of available
data, measuring the importance of players in team sports to help coaches and
staff to win more games is gaining relevance. A wide collection of synthetic
indices has been developed in the sport statistics literature to measure each
player’s contribution to the team win. Among others, we can mention Plus-
Minus (PM) and its generalizations (see, e.g., Kubatko et al., 2007; Grassetti
et al., 2021), Win-Shares (WS), Wins Above Replacement Player (WARP)
and their advances (see, for a review, Sarlis & Tjortjis, 2020, which also high-
lights pros and cons of such methods). A new measure of players’ contribution
to the team in basketball has been recently developed (Metulini & Gnecco,
2022). It adopts a combination of a two-step approach based on the logistic
regression and the concept of generalized Shapley value (Nowak & Radzik,
1994). This proposal aims to gather most of the advantages (and avoid dis-
advantages) of industry-standard measures. Recent PM versions moved in the
direction of solving some cons, such as just considering only scoring factors,
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and multicollinearity. However, those issues still need attention (Terner &
Franks, 2021). The measure proposed in Metulini & Gnecco, 2022, similarly
to BPM, presents the advantage of being based on both offensive and defen-
sive scoring and non scoring features. Furthermore, the method takes into
account probabilities to win the game, which are estimated based on a long
time span of box-score synthetic measures (the so-called four Dean’s factors,
Kubatko et al., 2007) that produce extremely high goodness of fit. Moreover,
similarly to what WARP does by introducing the replacement level player, the
approach proposed in Metulini & Gnecco, 2022, considering lineups, accounts
for marginal utilities of players. This is achieved by explicitly accounting for
all the lineups each player has played with. In doing so, considering a proper
level for the replacement player is not needed and multicollinearity is avoided.

2 The generalized Shapley measure
The generalized Shapley value for a player in a generalized coalitional game
with n players represents his/her average marginal utility to a suitably ran-
domly formed ordered coalition of players. To obtain this measure for basket-
ball players, first, the coefficients of a logistic model applied to game level are
computed through the equation log P(Yi=1|XXX)

P(Yi=0|XXX) = XXXiβββ, where the left part of the
equation represents the log-odd of Yi conditional on XXX ; YYY is the binary response
variable representing the outcome of the games, Yi ∈ {0,1} , i = 1, ...,g, where
g is the number of games. XXXi is the i−th row of the design matrix XXX with g
rows and p columns (p=8, the eight Dean’s factors used as explanatory vari-
ables computed at the game level). βββ is a vector containing the p regression
parameters associated with the explanatory variables. Since the single lineup
does not play the full match, to determine the probabilities to win the game
for that quintet is not feasible. To deal with this issue, a dataset X̃XX where the
Dean’s factors are computed at the single lineup level (i.e., each row of the
dataset corresponds to a lineup) is used and the probabilities to win the game
P(Win)L j is predicted on each lineup L j by using the vector β̂ββ of estimated co-
efficients from the first step. Let X̃XX jjj be the j-th row of the matrix X̃XX with l rows
(where l is the number of lineups considered) and p=8 columns (expressing the
eight Dean’s factors computed at the lineup level). The probabilities to win the
game for the lineup Lj is expressed as P(Win)L j =

exp(X̃XX jjjβ̂ββ)
1+exp(X̃XX jjjβ̂ββ)

, j = 1, ..., l . In the
third step, one considers two versions (unweighted and weighted)* of the gen-
eralized characteristic function, hence of the (Nowak-Radzik, NR) generalized

*The two differ in terms of taking/not taking in account the time players are on the court.



225

Shapley value: φNR
i (N,υ) = 1

n! ∑T∈T with |T |=n (υ((T (i), i))−υ(T (i))) , where
T refers to the set of all ordered coalitions of players, T (i) represents the or-
dered subcoalition made by the predecessors of i in the permutation T , whereas
(T (i), i) is the ordered subcoalition made by T (i) followed by i. υ : T → R
(such that υ( /0) = 0) is called generalized characteristic function. Metulini &
Gnecco, 2022 described two possible choices for the generalized characteris-
tic function υ(.) (υ1(.) and υ2(.)). When restricted to a lineup, the general-
ized characteristic function υ1(.) represents the probability P(Win) to win the
game for every specific lineup. At the same time, υ2(.) is a function of both
P(Win) and the probability of occurrence P(Occ) of that lineup on the court.
The corresponding generalized Shapley value measures are called unweighted
generalized Shapley value (UWGS) and generalized Shapley value (WGS).

3 Applications
The UWGS (WGS) may be used for different purposes. For example, Metulini
& Gnecco, 2022, by computing the generalized characteristic function based
on all the games (regular season and playoff) from 17 National Basketball As-
sociation (NBA) seasons (2004/2005 – 2020/2021)†, determine (approxima-
tions of) the two measures for the Utah Jazz players during season 2020-21,
rank players in terms of such measures, and propose a “greedy” algorithm
to suggest best lineups conditional to the presence/absence of a specific team
player. The algorithm is based on choosing the player with the largest UWGS
(WGS), recomputing the UWGS (WGS) of teammates based just on the line-
ups where the chosen player was in, and repeating the process until five play-
ers have been chosen. Since the UWGS and the WGS are composite measures
that aim to evaluate a player marginal utility in terms of winning the game, it is
reasonable to think that a player may be rewarded with a salary that is propor-
tional to these measures. Biancalani et al., 2023 using income data available at
basketballinsiders.com and computing such measures for the play-
ers of three NBA teams, proposed an instrument to predict the deal of a better
contract (compared to the previous year) in the next season based on deviations
of estimated salaries (according to a log-linear model) from the true incomes.

4 Possible developments
From a methodological viewpoint, a natural future direction might regard de-
veloping a generalized Shapley measure that takes into account players’ roles

†Features of the logistic model’s dependent variable and Dean’s factors for both XXX
and X̃XX are computed based on the dataset provided by BigDataBall Company (UK)
(www.bigdataball.com).
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as constraints. In fact, with the UWGS (WGS), we might obtain (potentially)
that the players with the largest marginal utility are all playing the same role.
However, when using the UWGS (WGS) to rank players, forming a lineup
with five players of the same role does not make sense. A solution to this
issue might be that of classifying players in the same role (by using a clus-
ter analysis), then compute the UWGS (WGS) separately for each role. From
an applied point of view, players’ popularity retrieved from Google Trends
(trends.google.it/home) may be exploited to investigate the degrees
of relationship between the player’s marginal utility and his/her popularity.
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ABSTRACT: While tree-based regression methods are popular in practice, they miss
a time series component. We thus combine regression trees with hidden Markov mod-
els (HMMs) and construct a hybrid model that can effectively capture serial correla-
tion and the complex dependencies between the input and output variables, while also
providing interpretable results. In a case study, we demonstrate that such an approach
offers a powerful and flexible tool for modeling financial data. However, the presented
method can be employed in many more fields, e.g. in ecology or sports.

KEYWORDS: hidden Markov model, regression tree, distributional tree, financial
markets.

1 Introduction

Tree-based regression models are a popular machine learning tool as they can
capture complex interaction effects and yet can be easily interpreted. Com-
bining these models with hidden Markov models (HMMs), which serve for
modelling time-series data with serial correlation, is an approach that uses
the strengths of both techniques. The scaffold of this model is the assump-
tion that, for each t = 1, . . . ,T , the observed time series data {Yt}t=1,...,T is
generated by one of N regression trees built by M input variables. Each of
these trees corresponds to one of the N states selected by the hidden state
process {St}t=1,...,T . We model the latter by an N-state, first-order Markov
chain with initial distribution δi = Pr(S1 = i) and state transition probabilities
γi j = Pr(St = j | St−1 = i), i, j = 1, . . . ,N. Putting these properties together,
this results in a model that probabilistically switches between regression trees.
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2 Model fitting with the EM algorithm

To fit the model, we use the EM algorithm (Zucchini et al., 2016). We represent
the sequence of states {St}t=1,...,T by the indicator variables ui(t) = I(St = i)
and vi, j(t) = I(St−1 = i,St = j), i, j = 1, . . .N, t = 1, . . . ,T . Then, we can write
the joint log-likelihood of the observation process, {Yt}t=1,...,T , and the states
(i.e. the complete-data log-likelihood) as

l(θ) = log

(
δs1

T

∏
t=2

γst−1,st

T

∏
t=1

Pr(Yt = yt | St = st)

)

=
N

∑
i=1

ui(1) log(δi)+
N

∑
i=1

N

∑
j=1

T

∑
t=2

vi, j(t) log(γi, j)

+
N

∑
i=1

T

∑
t=1

ui(t) log
(
Pr(Yt = yt | St = i)

)
.

The EM algorithm switches between E- and M-Step, i.e. between estimating
the ui(t)’s and vi, j(t)’s given the current parameter estimates and maximizing
the joint log-likelihood l(θ). We address the problem of local maxima by
running the EM algorithm with different starting values.

Still to discuss is the precise form of pi(yt) = Pr(Yt = yt | St = i). For regu-
lar HMMs, this expression is given by the density or probability function of the
chosen state-dependent distribution. As we do not make any distributional as-
sumption, we have to find an appropriate expression for regression trees. In the
following, we will present two possible procedures: The obvious approach is
to employ the CART algorithm (Breiman et al., 1984), to use weights accord-
ing to the actual state probabilities and to fit regression trees by minimizing the
corresponding residual sum of squares (Therneau & Atkinson, 2019). Then,
we assume pi(yt) to be normally distributed where the mean equals the leaf
node’s means

µt =
1

nm̃i
∑

j=1,...,T
I(x j ∈ Rm̃i) y j

with m̃i ∈ 1, . . . ,Mi being the node for which xt ∈ Rm̃i and nm̃i denoting the
number of observations in region Rm̃i for the tree of state i. Moreover, the
standard deviation σt is regarded as a hyperparameter to tune. In the second
approach, we do not employ classical regression trees but distributional trees
which constitute as a specific form of regression trees. The difference is the
way of splitting. While for regression trees the splitting rule only optimizes
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Figure 1. The time series of log-returns of the S&P 500 from 30th August, 2000 until
30th December, 2022 are displayed. The most likely states under the correspond-
ing model (left panel: Regular HMM; middle panel: HMM-RT; right panel: HMM-
disttree) are colorized.

according to the means between the leaf nodes, for distributional trees the data
are split into homogeneous groups with respect to a full parametric distribution
(Schlosser et al., 2019). Like in the first approach, we replace pi(yt) with the
density of a normal distribution, however, the standard deviation is no longer
a hyperparameter. We fit such distributional trees using the R package disttree
(Schlosser et al., 2021).

3 Application to financial data

To illustrate the usefulness of the proposed approach, we consider a case study
on financial data. In financial markets, the terms “bullish” and “bearish” de-
scribe the overall sentiment of the market participants towards a particular asset
or the market as a whole. In an HMM context, we can use these two terms as
proxies for latent states. A bullish market is characterized by a calm period of
moderately rising prices, while a bearish market is marked by nervousness and
oscillating, but mostly falling prices. We apply the presented methods to the
daily S&P 500 log-returns from 30.08.2000 – 30.12.2022 as the observed time
series and use two input variables, the daily oil and gold log-returns.

After fitting both models to the data, we use the Viterbi algorithm (see Zuc-
chini et al., 2016) for state decoding. We can see in Figure 1 (middle panel)
that the classical regression tree approach is not able to capture the bullish
and bearish markets as the model switches between states within these market
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phases. In contrast, the distributional tree recognizes calm and nervous mar-
kets (right panel of Figure 1) which builds the basis for further analysis, e.g.
the prediction of future log-returns. When comparing the distributional tree
method to a regular HMM with a normal distribution as the state-dependent
distribution (left panel of Figure 1), significant similarities can be observed.
However, in the presence of more covariates, the distributional tree regression
method automatically chooses variables and interactions (see Schlosser et al.,
2019) and, thus, circumvents the usual selection problems.

4 Discussion

Using tree-based regression in the framework of HMMs presents a promising
approach for modeling complex data sets with a wide range of input variables.
Specifically, our findings indicate that employing distributional trees in the EM
algorithm outperforms classical regression trees in this context. Differences in
other distribution parameters than the mean (such as the standard deviation)
can only be captured by distributional trees, which provide much more flexi-
bility without being computationally more costly. In particular, the HMM-RT
approach is twice as fast, but also requires cross-validation via the standard
deviation, which is why in the end the HMM-disttree method is more efficient.

The approach presented herein should be considered as merely a starting
point for establishing connections between HMMs and machine learning algo-
rithms within the regression domain. For instance, the combination of HMMs
and random forests could potentially mitigate concerns related to overfitting.
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ABSTRACT: This paper explores association between the notions of similarity and preference by 
using the framework of the theory of binary relations considered as subsets of the cartesian product 
of the set of objects by itself. Unordered partitions correspond to the so-called equivalence relations, 
and ordered partitions, to the so-called weak order relations. We derive a number of properties of 
the metric space of equivalence and weak order relations. One of them is establishing of the fact 
that the so-called Kemeny distance between tied rankings is identical to the mismatch distance 
between corresponding binary relations of weak order. 

KEYWORDS: equivalence relation, weak order, distance, contingency table, consensus 

1 Introduction 

The notions of similarity and preference are usually considered quite different. The 
former is expressed via the concept of partition, a set of non-overlapping subsets 
containing “similar” objects, so that different subsets contain ‘dissimilar” objects. The 
latter is expressed via the concept of ordering or, more generally, ordered partition. It is 
assumed that objects belonging to one part preceding another part are in some sense better 
than those in this other part. In this sense objects belonging to the same part of an ordered 
partition are “similar”.  This association between the notions of similarity and preference 
can be further elaborated by using the framework of the theory of binary relations 
considered as subsets of the cartesian product of the set of objects by itself. Unordered 
partitions correspond to the so-called equivalence relations, and ordered partitions, to the 
so-called weak order relations. We consider the metric space of binary relations with 
respect to the so-called matching distance, which is the size of the symmetric difference 
between relations as subsets of ordered pairs of objects. This allows us to consider both 
equivalence and weak order relations as part of this metric space and to mathematically 
explore the separate subspace of equivalence relations and subspace of weak order 
relations, as well as affinities between these subspaces.    

2 Main results 

This talk will describe results found within this approach (see also [Mirkin 1979, 2012], 
Mirkin, Fenner [2019]). Among them are the following. 

1.! We attend to the Kemeny approach for finding consensus rankings as those 
minimizing the summary distance to those presented. Here we prove that 
the Kemeny distance [Kemeny 1959] between rankings is, in fact, the 
mismatch distance between the corresponding weak-order binary relations. 
The importance of this result stems from the fact that the former involves 
Kendall object-to-object matrices with three possible values for the entries: 
1 for preceding, -1 for following, and 0 for a tie; whereas the latter involves 
only two: 1 for the presence and 0 for the absence of a pair in the binary 
relation [Kendall 1938]. In contrast, the distance between relations involves 
only 0 (no relation) and 1 (there is relation), with no negative values at all 
which appear not necessary, in contrast to common sense.  
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2.! We present an explicit statement expressing the Kemeny consensus 
criterion in terms of the relational consensus matrix, analogous to the so-
called consensus matrix in the problem of consensus clustering [Mirkin 
2012]. In contrast to the analysis of consensus clustering, however, the (i, j) 
entry in this consensus matrix is not simply the number of partitions for 
which elements i and j belong to the same part, but also includes the number 
of rankings for which i precedes j. The problem, which involves the 
subtraction of a threshold, is equivalent to maximizing the sum of the 
consensus matrix entries minus the number of pairs in the corresponding 
equivalence relation (sometimes referred to as the partition concentration 
index), weighted with a penalty defined by the threshold. The subtracted 
part plays the role of a naturally emerging regularizer. The regularizer plays 
no role, though, when the solution is restricted to a class of ranked partitions 
like the class of linear rankings with no ties. 

3.! We test the sensitivity of the Kemeny median concept by applying what we 
call Muchnik test (see [Mirkin 2012] for the case of unordered partitions) to 
ordered partitions. Specifically, we apply the concept of median to the 
Likert scales popular in Psychology [Likert 1932]. Given an ordered 
partition R = (R1, R2, … , Rp), the Likert scale replaces R by the set of binary 
ordered partitions St (t = 1, 2, … , p-1) that separate the union of the first t 
parts of R from the rest. The question then arises as to whether R is a median 
for the set of binary rankings St (t=1, 2, … , p-1), as one might expect, or 
not. Perhaps surprisingly, it turns out that it is one of the “coarse” binary 
rankings St that is a median, rather than R itself. 

4.! We derive explicit formulas for the distance, especially those regarding the 
relationship between weak orders and their induced equivalence relations, 
using the ternary relation “between” on the set of binary relations and the 
notion of “refinement” on the set of tied rankings, as well as the notion of 
contingency table from statistics. For example, we prove that the mismatch 
distance between ordered partitions R and R! can be decomposed into 
ranking and equivalence parts: 
 
  d(R, R!) =  !" d(E, E!) + d(R"R!, R!"R). 
 
where E, E! are equivalence relations corresponding to unordered partitions 
in R, R!and the star " denotes the operation of lexicographic product of two 
ordered partitions [Mirkin 1979]. The distance between R"R! and R!"R is 
equal to half of the total of the products of the cardinalities of those parts in 
the intersection R#R! for which the orderings in R and R! are contradictory: 

   d(R" R!, R!"R) =  !"# # $%&$%'&'&(&)%*%)          
       

Considering the rankings R and R! as unordered partitions, denoted above 
by ! and !!, respectively, the mismatch distance between the 
corresponding equivalence relations, E and  E!, can be expressed as 

 
   d(E, E!) = # $%" + # $,&" - .# $%&"%/&&%      
       

       where Ns, N’t , and Nst are, as above, the numbers of elements in parts Rs   
       of R, R!t of R! and Rs#R!t of R#R!, respectively. 
 

3 Conclusion 

This shows that, in fact, there is no common ground to simultaneously consider weak 
orders and equivalence relations, because the lexicographic products are items added to 
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distances between equivalence relations, which are absent from unordered partitions. 
Therefore, further advances along the path based on the distance can be made within each 
ordered partitions (rankings) and unordered partitions, but not in between. Among 
possible directions for further research, the following two seem quite straightforward. 
First is the task of numerically solving the problem of consensus ranking by extending 
the problem of consensus ordering [Charon and Hudry 2007]. For example, the additive 
structure of the criterion suggests that one might first find an optimal linear ordering and 
then aggregate some of its parts to form a tied ranking. Second, the failure of the Muchnik 
test on Likert scales suggests that new ways for formulating more sensitive criteria for 
consensus are needed. 
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ABSTRACT: In Data Science, entities are usually described by single-valued mea-
surements. Symbolic Data Analysis (SDA) can model more complex data structures
such as intervals and histograms that possess internal variability. In this work, we
propose an extension of the multi-class Fisher Discriminant Analysis to the interval
case based on Mallows’ distance and Moore’s algebraic structure. Similarly to the
conventional case, test observations can be wrongly classified. However, the ques-
tion is whether the observation is wrongly classified or there exists a labelling switch.
Problem may also arise when an observation is atypical. We adress the symbolic data
classification problems outline above and use the Mallows’ distance adapted to extend
classmaps and farness to the SDA setting. Real data is used to illustrate our approach.

KEYWORDS: Symbolic Data Analysis, Classification, Symbolic Fisher Discriminant
Analysis, Classmap, Farness.

1 Introduction

Classification is of utmost importance in data science, and the symbolic com-
munity is fully aware of that. In a classification problem, the aim is to create
a decision rule that assigns a label (or class) to an object (observation) by
studying a set of measurements (or variables) characterizing the objects. Con-
ceptually, we can divide the space of the original set of variables into different
regions, each associated with one specific label. Sometimes, in the list of vari-
ables available, there are a few that do not contribute to the separation of the
classes (named irrelevant) or only have repeated information about the objects
(called redundant). A common possible way to circumvent these problems is
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to project the observations in a space of lower dimension that turns the sepa-
ration between classes clearer, which in principle leads to better classification
performance. Conventional Fisher discriminant analysis uses this strategy, by
finding the directions α ∈Rp that best separate the different classes in the pro-
jected space: Z = αT X , where X = (X1, . . . ,Xp)T ∈Rp, p ∈N, is a real-valued
random vector with E(X |Y = j) = µ j ∈ Rp, Var(X |Y = j) = Σ ∈ Rp×p, for
j = 1, . . . ,g, and Y represents the class of a given observation, called class-
variable. Assuming that within a class the variances of X |Y = j, j = 1, . . . ,g,
are equal, we can compute a pooled sample covariance matrix, S, to estimate
Σ, and the Fisher problem can be formulated as the following maximization
problems to estimate the sample i-th discriminant vector, α̂i

α̂i =

⎧
⎪⎪⎨

⎪⎪⎩

arg max
α: αT Sα = 1

αT Bα
αTWα

α̂T
j Sα = 0, j ∈ {1, . . . , i−1}

, i = 1, . . . ,s ≤ min{g−1, p},

where W = (n− g)S, B = ∑g
j=1 n j(x j − x)(x j − x)T , x is the overall sample

mean, x j is the sample mean on the j-th class, n j is the sample size of the j-th
class, and n = n1 + . . .+ng is the total sample size. Moreover, it is known that
T = B+W , with T = ∑g

j=1 ∑n j
h=1(xh j − x)(xh j − x)T , where xh j represents the

observed measurements on the h-th object of the j-th class.
For interval-valued data, the sum of squared total verifies T = B+W , and

it can be extrapolated using the Mallows’ distance instead of the usual Eu-
clidean distance (see Irpino & Verde, 2006), which combined with Moore’s
definition of linear combination leads to the following maximization problems
for interval-valued variables:

αi =

⎧
⎪⎪⎨

⎪⎪⎩

arg max
α: αT Sα = 1

αT BCα+δ|α|T BR|α|
αTWCα+δ|α|TWR|α|

αT
j Sα = 0, j ∈ {1, . . . , i−1},

where |α| = (|α1|, ..., |αp|)T , Bl (W l) is the between (within) sum of square
matrix, defined before, based on the centers of the p-dimensional interval-
valued observations, if l =C, and on its ranges when l = R.

Estimating the first r ≤ s directions, {α̂1, . . . , α̂r}, a new observation x0 is
assigned to the k-th class, k ∈ {1, . . . ,g}, whenever

k = arg min
j∈{1,...,g}

r

∑
t=1

d2
M(α̂T

t x0, α̂T
t x j),
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where dM(x,y) represents the Mallows’ distance between x and y, two p-
dimensional interval-valued observations.

To evaluate the performance of the classifier, we split the dataset into the
training set, used to estimate the classification rule, and the test set used to
independently assess its performance. The test set observations are classified,
and the assigned class is compared with the true class to construct the confu-
sion matrix, based on which several global and local measures of performance
can be computed.

The classes of the dataset observations are assumed to be mistake free,
but with real data, this may not be always true. Moreover, data may contain
outlying observations that, even though correctly classified, may reveal atyp-
ical patterns when compared with its class or any other class under study. In
Raymaekers et al., 2022 and Raymaekers & Rousseeuw, 2022, the authors pro-
posed graphical displays whose goal is to visualize aspects of the classification
results to obtain insight into the data, adding interpretability to the results sum-
marized by the confusion matrix. The problem of label switching or atypical
observations can be discussed with the help of these plots. In this work, we
extend these ideas to the classification problem for interval-valued data. These
generalizations rely on the Mallows’ distance and we exemplify their relevance
and applicability using real examples.
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ABSTRACT: We propose a method to test locally functional data whose domain is
a Riemaniann manifold. The procedure is based on testing hypotheses on a suitably
defined family of balls of the domain, and can be applied to a vast variety of different
functional tests. The final result is an adjusted p-value function defined on the same
domain as functional data, and controlling the ball-wise error rate.

KEYWORDS: functional data, manifolds, permutation tests, adjusted p-value.

1 Introduction

In functional data analysis (FDA), the object of statistical analysis are typically
functions modeled as random elements of a Hilbert space. Inference on func-
tional data is particularly challenging since it deals with elements of infinite di-
mensional spaces. A currently popular topic in FDA is local inference, i.e., the
continuous statistical testing of a null hypothesis along the domain of data. The
principal issue in this topic is the infinite amount of tested hypotheses, which
can be seen as an extreme case of multiple testing. Local inferential techniques
are either based on simultaneous confidence bands (Liebl & Reimherr, 2023),
or on the definition of a p-value function, that is a function assigning a p-value
at each point of the domain. Methods based on such a p-value function typi-
cally adjust p-values for guaranteeing a control of a quantity related with the
error rate on the whole domain, that could either be related to the family-wise
error rate (e.g., Pini & Vantini, 2017, Abramowicz et al., 2022) or to the false
discovery rate (e.g., Lundtorp Olsen et al., 2021). In particular, Pini & Van-
tini, 2017 introduced the interval-wise testing procedure which performs local
inference for functional data defined on an interval domain, where the output
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is an adjusted p-value function that controls for type I errors on intervals. The
interval-wise testing procedure provides a control of the interval-wise error
rate, that is the probability that, if on an interval the null hypothesis is true, at
least one part of it is detected as significant.

Most of the current literature focuses on functional data whose domain is
an interval of R. The few exceptions considering more complex domains are
based on the false discovery rate control (Lundtorp Olsen et al., 2021), or on
an asymptotic control of the family-wise error rate (Abramowicz et al., 2022).
In this work, instead, we extend the method proposed by Pini & Vantini, 2017
to functional data defined on manifold domains. The resulting method will
provide a finite sample control of the ball-wise error rate, which is an extension
of the interval-wise error rate to the multidimensional setting.

We extend this idea to a general setting where domain is a Riemannian
manifolds. This requires new methodology such as how to define adjustment
sets on product manifolds and how to approximate the test statistic when the
domain has non-zero curvature. The resulting method will provide a finite sam-
ple control of the ball-wise error rate, which is an extension of the interval-wise
error rate to the multidimensional setting. This extended abstract describes an
overview of the proposed statistical method. More details on the method, its
theoretical properties, a simulation and an application to real data can be found
in Lundtorp Olsen et al., 2023.

2 Methods

We will assume that the domain of our functional data are Riemannian mani-
folds. In the following, we give a definition of the manifold, as well as the one
of ball, that will be of particular importance to define the error control provided
by the method.

Definition 1 A manifold M of finite dimension is a smooth manifold together
with a smoothly varying 2-tensor field g on M which is an inner product at
each point. The inner product g defines a metric d and a measure µ on M,
which we will refer to as the Riemannian metric and the Riemannian measure,
respectively.

Definition 2 For a given manifold M with metric d, define the ball of radius ε
and center x as

B(x,ε) = {y ∈ M|d(x,y)< ε}, x ∈ M,ε > 0.
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Let M be a manifold with metric d. We assume that we have observed n
smooth functional data ξ1, . . . ,ξn: M 2→ R. For simplicity of notation, here,
functional data are assumed to be observed on a single manifold domain. We
refer to Lundtorp Olsen et al., 2023 for a more general version, where the
domain can be as well a product of a finite number of manifolds.

Assume that we would like to test at every point x ∈ M, a pointwise null
hypothesis H0(x), against an alternative hypothesis H1(x). We further assume
that hypotheses can be tested by means of a pointwise test statistic T (x), which
is stochastically greater under H1(x) than under H0(x). Finally, let p(x) denote
the unadjusted p-value of the test at point x.

The procedure to define an adjusted p-value function on this setting is
based on testing the null and alternative hypothesis on every ball of M of size
ε≤ r, with a fixed r (ball-wise testing), and then adjusting the p-values in order
to obtain a desired multiplicity control.

Ball-wise testing. Let B = B(y,ε) be a fixed ball in M. We define the null
and alternative hypotheses on the ball as

HB
0 : ∩x∈B(y,ε)H0(x); HB

1 : ∪t∈B(y,ε)H1(x). (1)

The hypotheses 1 can be tested with the integral test statistic

T B =
∫

B
T (x)dµ(x) (2)

Let pB be the p-value of the obtained test on ball B. In the ball-wise testing
phase, the null and alternative hypotheses HB

0 and HB
1 are tested on every ball

B ∈ M with radius ε ≤ r, with a fixed r. The constant r is a parameter of the
procedure, and will affect the power and error control of the obtained proce-
dure. We refer to Lundtorp Olsen et al., 2023 for a discussion on the effect of
the parameter in the test results.

We here give the general definition of ball-wise hypotheses and p-values.
Note that the tests can be performed with any procedure, given that the ob-
tained p-values are exact. In particular, in Lundtorp Olsen et al., 2023 we
propose to use permutation tests for testing pointwise and ball-wise hypothe-
ses.

Adjustment. Let B denote the set of all balls B ∈ M with radius ε ≤ r. The
adjusted p-value at point x ∈ M is defined as

p̃(x) = sup
B∈B:x∈B

pB. (3)
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In particular, the null hypothesis H0(x) is rejected by p̃(x) at level α only if
all null hypotheses on balls B ∈ B that contain the point x are also rejected at
the same level. This is sufficient to guarantee that the procedure controls the
ball-wise error rate Lundtorp Olsen et al., 2023, that is, ∀α ∈ (0,1):

∀B ∈ B : HB
0 is true, P(∃x ∈ B : p̃(x)≤ α)≤ α. (4)
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ABSTRACT: A scalable variational inference approach for stochastic block models is
proposed. The approach is based on a case-control approximation of the likelihood
function, which is an unbiased estimator of the full likelihood. Using the case-control
likelihood under a variational inference perspective allows us to strongly reduce the
computational complexity, making model estimation feasible for large networks. We
evaluate the performance of the proposed algorithm using both simulated and real data
coming from a Facebook derived social network.
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1 Introduction

Stochastic block models (SBMs; e.g. Snijders & Nowicki, 1997) represent a
powerful tool for modeling social network data that can discover communities
and clusters of nodes according to their social behavior. Under this formula-
tion, the nodes in the network are assumed to belong to a finite number of la-
tent blocks, identified by individual-specific discrete latent variables, with the
probability of connection between two nodes only depending on their block
membership.

The predominant method of inference for these models is based on a varia-
tional approximation of the model log-likelihood (Daudin et al., 2008). How-
ever, the complexity of the corresponding estimation algorithm, keeping the
number of blocks fixed, is of the order of O(n2), where n is the number of
nodes. This implies that model estimation is computationally intractable for
large-scale networks, limiting its use to a narrow range of applications.

Here, following a previous approach (Roy et al., 2019), we propose a case-
control approximation of the target function maximized under the variational
inference approach, which leads to a strong reduction of the computational
complexity, so that the resulting estimation algorithm may be efficiently ap-
plied to large networks. The effectiveness of our proposal will be illustrated
via simulation and through a real data application.
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2 Stochastic block models

Let YYY denote an adjacency matrix referred to n nodes and whose generic el-
ement, Yi j, is a binary random variable that is equal to 1 if there is an edge
between nodes i and j and to 0 otherwise; yyy and yi j, i, j = 1, . . . ,n, are used
to denote the realizations of YYY and Yi j, respectively. We focus on binary undi-
rected networks with no self-loops, leading to a symmetric adjacency matrix
with missing values on the main diagonal.

SBMs assume that nodes in the network belong to one out of k distinct
unobserved blocks; these are described by means of independent and identi-
cally distributed, node-specific, latent variables Ui, i = 1, . . . ,n, defined over
the discrete support {1, . . . ,k} with probabilities p(Ui = u) = πu, u = 1, . . . ,k.

SBMs also postulate a local independence assumption between nodes:
conditional on the latent variables Ui and Uj, responses Yi j are assumed to
be independent Bernoulli random variables with success probabilities given
by φuv = p(Yi j = 1|Ui = u,Uj = v) . Therefore, the conditional distribution of
Yi j only depends on the block memberships of nodes involved in the relation.
Moreover, parameters φuv must satisfy the invariance property with respect to
reflection, that is, φuv = φvu for all u < v.

2.1 Classical variational inference

Let θθθ denote the vector of all model parameters. For parameter estimation, we
may rely on the maximization of the following likelihood function:

L(θθθ) = p(yyy) = ∑
uuu

p(yyy|uuu)p(uuu), (1)

where uuu = (u1, . . . ,un)′ is a realization of the random vector UUU = (U1, . . . ,Un)′,
and

p(yyy|uuu) =
√

∏
i≤n

∏
j ̸=i

p(yi j|ui,u j), p(uuu) = ∏
i≤n

πui .

As known, the likelihood function in equation (1) involves summation over
the configurations of all latent variables in the model, so that the computational
burden is prohibitive also when dealing with networks of a very limited size.
Moreover, also the posterior expectation of the complete data log-likelihood,
which is used within the Expectation-Maximization (EM) algorithm, is in-
tractable. Therefore, a classical solution is to rely on a variational approxi-
mation of the EM algorithm (VEM; Daudin et al., 2008), which is based on
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the maximization of the following lower-bound of the likelihood function in
equation (1):

J (θθθ) = logL(θθθ)−KL[R(uuu) || p(uuu|yyy)], (2)

where p(uuu|yyy) denotes the (intractable) posterior distribution of the latent vec-
tor uuu given the observed adjacency matrix yyy, R(uuu) denotes its approximation,
and KL[· || ·] is the Kullback-Leibler divergence between these two distribu-
tions. A typical choice for R(uuu) is that based on the conditional independence
between the latent variables in the network, given the observed data, imply-
ing that R(uuu) = ∏i≤n h(ui,τττi), where h(·,τττi) denotes a Multinomial probability
distribution with parameters 1 and τττi = (τi1, . . . ,τik)′. The generic element of
τττi, say τiu, can be interpreted as an approximation of p(Ui = u|yyy).

Parameter estimates are obtained by alternating two separate steps until
convergence of the algorithm. In the variational E-step, J (θθθ) is maximized
with respect to τττi, i = 1, . . . ,n, with θθθ fixed at the values obtained from the
previous iteration, under the constraints that these quantities are non-negative
and ∑u τiu = 1 for all i. In the variational M-step, J (θθθ) is maximized with
respect to θθθ, with the τττi’s fixed at the values obtained from the E-step.

Besides the several advantages of the variational approximation procedure,
the complexity of the iterative algorithm used for deriving parameter estimates,
as already mentioned, is of order O(n2) and this may lead to a excessive com-
putational effort when dealing with large-scale networks.

3 Proposed case-control variational inference

The case-control idea derives from cohort studies where the aim is to compare
a group having the outcome of interest (“case”) with a control group with re-
gard to one or more characteristics. Usually, the presence of case subjects is
relatively rare compared to that of control subjects, and it is impossible or too
expensive to select a simple random sample with enough cases to draw con-
clusions. Accordingly, in a case-control study, all available cases are collected
and the corresponding controls are sampled from the corresponding cohort.

In the context of network data, we can view the presence of connections
(that is, the 1’s) as cases and the absence of connections (the 0’s) as controls,
and we can rely on this analogy to propose a case-control approximation of the
target function in (2). In particular, for every node i, let A i denotes the random
subset of { j : yi j = 0, j ̸= i}, with ni0 = ∑ j ̸=i(1− yi j) being the total number
of nodes that are not connected with node i. We also define B i as the random
subset of { j : yi j = 1, j ̸= i}, with ni1 =∑ j ̸=i yi j being the total number of nodes
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connected with i. We may derive the following approximation of p(yyy|uuu):

p̃(yyy|uuu) =

√√√√√∏
i≤n

⎡

⎣
(

∏
j∈A i

p(yi j|ui,u j)

)ni0/|A i|(

∏
j∈B i

p(yi j|ui,u j)

)ni1/|B i|⎤

⎦.

Since p̃(yyy|uuu) is based on random samples from the 1’s and 0’s, we get an
unbiased estimator of p(yyy|uuu). The case-control approximate likelihood is then
defined as L̃(θθθ) = ∑uuu p̃(yyy|uuu)p(uuu) and the corresponding lower bound may be
derived as in equation (2), leading to the approximate target function J̃ (θθθ).
Given the assumption of a posteriori independence of the latent variables and
denoting by wi0 = ni0/ |A i| and wi1 = ni1/ |B i| the sampling rates, we have

J̃ (θθθ) = ∑
uuu

R(uuu) log[p(uuu)p̃(yyy|uuu)]−∑
uuu

R(uuu) logR(uuu) = ∑
i≤n

∑
u≤k

τiu logπu

+
1
2 ∑

i≤n
∑
u≤k

τiu

[
wi0 ∑

j∈A i

∑
v

τ jv log(1−φuv)+wi1 ∑
j∈B i

∑
v

τ jv logφuv

]

−∑
i≤n

∑
u≤k

τiu logτiu.

Parameter estimation may be then obtained by means of a modified VEM
algorithm that maximizes J̃ (θθθ). Denoting by m < n the average number of
1’s and 0’s selected for each node, the complexity of the proposed estimation
algorithm reduces to O(n×m). For large networks that are usually sparse, we
can randomly choose a very small subset of 0’s, so as to obtain a strong reduc-
tion of the computing time. Moreover, alternative sampling schemes based on
descriptive network statistics may also be considered in order to increase the
efficiency of the algorithm and the accuracy of the estimates.
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ABSTRACT: Spatial networks describe relations among agents that live in a metric
space and whose locations affect the probability of connections. Recently, nonpara-
metric Bayesian statistics (BNP) proved itself to be a powerful tool to provide random
graph models that mimic real world networks, but no proposals have been made so far
to include spatial covariates. I will show how some available models fail in recovering
spatial information and conjecture a way to solve the problem.

KEYWORDS: networks, spatial statistics, baysian nonparametrics.

1 Introduction

Relational data can be described by mathematical objects known as graphs,
collection of nodes, which represent agents of any nature, connected by edges
or links, indicating a relation between those nodes. In applications, a graph is
usually called network. Networks describe a plethora of relational phenomena,
like transportation, social interactions, email exchanges, protein interactions,
internet connections and many more. Network data have been collected ex-
tensively in the last decades and have pushed the frontier of research to offer
refined models able to fit the complexity of their information.

There are multiple characteristics of real network that researchers try to
adhere to when designing a random graph model. The degree of a node is the
number of edges departing from it, and the degree distribution of the network is
an interesting aspect to study, which in many real examples has been observed
to be close to a power-law. Additionally, real networks often display a strictly
positive clustering coefficient - defined as number of triangles over triplets -
which indicates the presence of transitivity in connections (a friend of a friend
will most likely become a friend). Also, the density of edges in many of the
gigantic networks we deal with nowadays seems to be very low, meaning that
the number of edges does not grow as fast as the number of nodes squared.

The graphon framework received a lot of attention in the last two decades
for its possibility of describing node exchangeable graphs, i.e. networks where
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a reshuffling of the labels of the nodes does not affect the probability of con-
nections. Being exchangeability a convenient property underpinning many
Bayesian models, it comes as no surprise that the graphon model became
connected with many Bayesian proposals. The graphon also contains as spe-
cial cases popular models like the stochastic block model and the latent factor
model. Nevertheless, this framework is misspecified for sparse networks, be-
ing able to fit only dense or empty ones (see Orbanz & Roy, 2015 for a review).
In section 2 I will review the model originally proposed in Caron & Fox, 2017
which uses BNP to overcome the sparsity limitation of graphons and fit some
of the properties we observe in real data. This model stimulated an interest-
ing line of research under the name of graphex process. The new proposals,
though, fail to describe networks whose edges need a spatial component to be
described. In section 3 I will show how Caron & Fox, 2017 fails to represent
data that feature a strong spatial component. I will include in the comparison
the multidimensional scaling algorithm and show how this spatial algorithm
fails to describe such data as well. I will finally conjecture how we can move
forward with a spatial network model under the graphex framework.

2 A Bayesian nonparametric model for sparse graphs

The model by Caron & Fox, 2017 defines a network as a Poisson point process
on the positive real plane, Z = ∑i, j≥1 zi jδ(θi,θ j),where zi j is equal to 1 if there
is an edge between nodes i, j and 0 otherwise, and θi ∈ R+ is the label of the
node. The model is heterogeneous, since the probability of connection depends
on the node sociability weight wi ∈ R+ (as opposed to homogeneous models
with equal probability across all pairs of nodes):

P(zi j = 1|(wk,θk)k≥1) = 1− e−2wiw j . (1)

To tune the distribution of w, the authors propose (θk,wk)k to be sampled from
a Poisson process with intensity λ(dθ)ρ(dw), with λ Lebesgue measure and ρ
a Lévy measure. Equivalently, we can describe W = ∑i≥1 wiδθi as distributed
according to a homogeneous completely random measure (CRM). CRMs are a
BNP building block, being used as flexible prior distributions over functional
spaces (Lijoi & Prünster, 2010). Caron & Fox, 2017 assume ρ to be regularly
varying at 0 with exponent σ ∈ [0,1], which intuitively means that ρ behaves
similarly to a power function with exponent σ in a neighborhood of 0 (for the
formal definition, see Caron et al. , 2023). Under this assumption, they prove
that the model describes empty, dense or sparse networks (with sparsity level
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tuned by σ) and that the degree distribution is a power-law with exponent 1+σ
for high degree nodes. Caron et al. , 2023 additionally prove that the clustering
coefficient of such model is asymptotically strictly positive.

3 Issues of current models with sparse spatial networks

Spatial networks are networks whose nodes live in a metric space, and their
positions affect the probability of connections. An example is the network of
airports, where nodes are airports and edges represent flight connections be-
tween them. An instance of it is available as the network of flight connections
in the United States of America in 2010∗. We focus on the continental part of
the US, excluding Alaska and Hawaii, for a total of 713 airports and 104 con-
nections. The network is sparse with power-law degree distribution. We can
easily convince ourselves that connections are determined partly by the size of
the airport (a “sociability”), and partly by its location.

We fitted eq. 1 to the dataset in order to estimate the sociability of each
airport, using a generalised gamma process as prior for the weights (the set up
is as described in Caron & Fox, 2017). Once obtained estimates, we sampled
100 networks from the posterior predictive and we compared the clustering
coefficient against its true value. Clustering is usually associated with a strong
space component, since spatial models favour connections between nodes that
are close (therefore inducing transitivity). The clustering coefficient of the real
data is 0.50, while the posterior predictive mean is 0.29 (95% credible interval
[0.25,0.34]). The BNP model provides a positive value, but still the true value
sits far away from the estimated one, suggesting that sociability is not enough
to capture the underlying dynamics of the airport data.

Another possibility to fit such data is to use a multidimensional scaling al-
gorithm, which takes a pairwise similarity matrix between nodes (in our case,
the binary adjacency matrix) and computes latent locations for the nodes which
minimise a loss function known as strain (Mead, 1992). Applying the algo-
rithm to the dataset and fixing a 2-dimensional latent space, we obtain figure
1. On the left side, longitude is plotted against the two projections, showing
that none of them is able to recover the true locations (the results for latitude
are similar). The orange dots represent the nodes with highest degree (hubs).
On the right, where nodes are shown in the 2-dimensional latent space, we can
clearly see that the positions are determined by the degree of the nodes, since
the hubs are all projected in a tight central position.

∗https://toreopsahl.com/datasets/
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The experiments suggest that a model to describe sparse spatial networks
is needed. I conjecture that this could be a modification of eq. 1 with an ad-
ditional spatial component. The model would inherit the interesting properties
of sparsity, power-law degrees and interpretability. This would be beneficial
not only for networks with a concrete notion of space, but also for those whose
connections can be described by similarity of nodes measured in an abstract
latent space (e.g. for qualitative covariates with no notion of distance).
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LIJOI, A., & PRÜNSTER, I. 2010. Models beyond the Dirichlet process. In:
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ABSTRACT: Complexity has become deeply ingrained in every aspect of our so-
ciety, and navigating this complexity has become a pressing challenge. Science, in
particular, is evolving at an unprecedented rate, constantly pushing the boundaries of
human knowledge and understanding. In order to make sense of this rapid scientific
evolution, science itself must adapt, employing systems that facilitate the interaction
among researchers and that allow to grasp the interconnectedness and evolution of var-
ious interdisciplinary fields. In this endeavor, technologies such as natural language
processing, network analytics, and machine learning play a pivotal role. These tools
provide the essential support needed to analyze vast amounts of scientific data, extract
meaningful insights, and uncover hidden patterns.

KEYWORDS: complexity, machine learning, science of science, keyword attribution

1 Introduction

Complexity permeates every facet of our existence, spanning from personal
connections to global issues like pandemics and climate change. It is undeni-
able that comprehending and effectively dealing with complexity has become
the paramount challenge of our current era and will continue to be so in the
times to come. In scientific research, the intricacy of the subject matter com-
pels researchers to venture beyond their familiar territory and actively pursue
collaboration and expertise from scholars in diverse domains. Over the past
few years, there has been a rise in scientific collaboration among researchers,
leading to intricate interactions involving individuals operating within the same
discipline, as well as from different fields of study. This paper is set in the con-
text of the Science of Science (SciSci) framework, where the main aim is to
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leverage the ever-increasing digital information on scientific production and
AI-driven approaches to gain insight into the progress of science, the amount
of scientific collaboration between researchers, and the degree of openness
(Fortunato et al., 2018).

2 Materials and Methods

We analyze Academic Collaboration Networks (ACNs), which are complex
graphs of researchers’ scientific output. Each publication in ACNs has impor-
tant attributes like title, abstract, and keywords, indicating the research topic.
By preserving the semantics of collaboration graphs, we connect the academic
community and recommend research topics, works, and people. We use ad-
vanced technologies like natural language processing (NLP), network analytics
(Barabási, 2013), and machine learning (ML)(Hastie et al., 2009; Goodfellow
et al., 2016) to attribute missing keywords to publications, which improves
our understanding of researchers’ scientific interests. This enhanced represen-
tation helps us comprehend their scientific endeavors and areas of expertise.

To display the effectiveness of statistical and AI-based methods in this
context, we consider the MaLGa dataset, that represents the scientific pro-
duction of a large interdisciplinary group of scientists in the field of machine
learning research, namely the Machine Learning Genoa Center (MaLGa -
https://malga.unige.it). We collected data of the papers published
by the MaLGa faculty members (n = 14) during the period 1984–2022 Among
a total number of 624 publications, 341 papers are equipped with previously
assigned keywords by venues or authors, and 573 papers with abstracts.

With the avilable data, we build a heterogeneous graph considering: (P)
the papers published by MaLGa members together with co-authors, (Y) the
year of paper publication, (V) the venue in which the paper was published and
(A) authors, i.e. MaLGa members and their co-authors. We consider edges
of the type A-P, P-V, and P-Y. The resulting graph is depicted in Fig. 1.
The obtained ACN comprises 2007 total nodes, of which 1023 authors, 624
publications, 322 venues, and 38 years. The total amount of edges is 4098,
with 2854 A-P connections, 620 P-V, and 624 P-Y.

3 Experimental results

We first use several keyword attribution techniques of increasing complexity
to assign missing keywords to publications based on their title and abstract,
then we exploit MetaPath2Vec Dong et al., 2017 to represent the graph with
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WYand YAAKE. Wee evaluate their performance in terms of Recall, Precision, and
F1-score against those (n = 341) papers that were associated with benchmark
keywords, manually provided by authors or journals. Our results (data not
shown) indicate that SingleRank keyword attribution method achieves the best
performance for all three metrics considered. Too visualise the impact of key-
words as additional attributes of nodes, we consider the 14 faaculty MaLGa
members represented through the embedding with and without keywords and
perform a PCA analysis, as shown in Fig. 2.

Adding the keywords into the graph representation improved the quality of
the information stored in the network. Indeed, the visualisation clearly indi-
cates that keywords improve the similarity among authors that share the same
specific research interests. For example, if we consider M. Santacesaria* and
G. S. Alberti†, we note that using embedding that incorporates keywords sig-
nificantly improve their similarity in terms of the distance measured in the
projected space (right panel of Fig. 2, yellow and dark green dots).

*https://scholar.google.com/citations?user=iVlCw_gAAAAJ
†https://scholar.google.com/citations?user=boBf5cgAAAAJ
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Figure 2. PCA projections of MaLGa faculty members represented with embeddings
with (right) and without (left) considering their keywords.

4 Conclusion

In conclusion, our paper suggests how combining graph data structures, graph
embeddings, NLP and ML techniques may provide valuable insights on com-
plex topics. This integrated framework offers a holistic perspective by leverag-
ing the strengths of each approach, enabling us to construct statistical models
capable of accurately representing the intricate nature of the real world.
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ABSTRACT: A dissimilarity d on a set X is said to be Robinson if there exists a total
order, said compatible, on X such that x < y < z =⇒ d(x,z)≥ max{d(x,y),d(y,z)}.
Roughly speaking, d is Robinson if the points of X can be represented on a line ie.
Robinson dissimilarities generalize line distances.

In this paper, we define k-dimensional Robinson dissimilarities, which generalize
the possibility, for a metric set (X ,d), to be embedded into a k-dimensional Euclidean
space. This generalization is more flexible than the classical embedding and we show
that every dissimilarity on an n-set X is (logn)-dimensional Robinson. We give an
O(n3) algorithm which builds such an embedding. This algorithm is based on an
incremental algorithm to recognize Robinson dissimilarities.

KEYWORDS: Robinson dissimilarities, embeddings, incremental algorithms.

1 Introduction

Given a finite set set X , a dissimilarity on X is a symmetrical function X ×
X 2−→ R+ such that ∀x ∈ X ,d(x,x) = 0 (we say that (X ,d) is a dissimilarity
space). Dissimilarities generalize distances (a distance is dissimilarity with the
triangular inequality).

Given a dissimilarity on a set X , a fundamental problem is to derive “geo-
metrical” properties of X from d, or to characterize dissimilarities from which
such properties can be obtained. For instance Robinson dissimilarities (Robin-
son 1951) correspond to points on a line. These dissimilarities were invented
to solve seriation problems in Archeology, but they are now a classical tool
for seriation problems in any field. They are also linked with Pyramids (Diday
1986, Durand & Fichet 1988), the standard model with overlapping classes.
Moreover, they play an important role ro recognize tractable cases for TSP
(Çela & al. 2023).

In this paper, we generalize Robinson dissimilarities to k(-dimensional)-
Robinson dissimilarities, which represent the fact for X to be embedded into
a k-dimensional space. This embedding is less strict than the usual Euclidean
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embedding. We show that, if d is a dissimilarity on a set X with |X |= n, then
d is (logn)-Robinson and we give a O(n3) algorithm which builds such an
embedding. This algorithm is based on an incremental algorithm to recognize
Robinson dissimilarities which is presented in the last section.

2 Robinson dissimilarities

A dissimilarity space (X ,d) is Robinson if there exists a total order, which is
said to be compatible, on X such that

x < y < z =⇒ d(x,z)≥ max{d(x,y),d(y,z)} (1)

Let (X ,d) a dissimilarity space and < be an order on X . Notice that < is a
compatible order of (X ,d) (which is thus a Robinson space) if and only if:

x ≤ y < z ≤ t =⇒ d(y,z)≤ d(x, t) (2)

Given a total order < on X and x,y,z ∈ X , we say that y is between x and z
for < if x < y < z or z < y < x. The set of the elements between x and z is an
interval for < and we denote it by [x,z]<. Notice that [x,z]< = [z,x]<.

3 Multidimensional Robinson dissimilarities

Let (X ,d) a dissimilarity space and k ∈ N1. We say that (X ,d) is k-Robinson
if there exist k orders <1,<2, . . . ,<k such that:

∀x,y,z, t ∈ X ,(∀1 ≤ i ≤ k, y,z ∈ [x, t]<i) =⇒ d(y,z)≤ d(x, t)

We say that (X ,d) is k-quasi-Robinson if there exist k orders <1,<2, . . . ,<k
such that:

∀x,y,z ∈ X ,(∀1 ≤ i ≤ k, y ∈ [x,z]<i) =⇒ d(x,z)≥ max{d(x,y),d(y,z)}

If k = 1, it is equivalent for a dissimilarity space to be Robinson or 1-
quasi-Robinson. For k ≥ 2, then if (X ,d) is k-Robinson, then (X ,d) is k-quasi-
Robinson, but the converse is false (see Figure 1). Notice in addition that,
if (X ,d) is k-(quasi-)Robinson, then (X ,d) is k + 1-(quasi-)Robinson. The
smallest k such that (X ,d) is the Robinson dimension of (X ,d).

If a metric space (X ,d) can be embedded into a Rk, then (X ,d) is k-
Robinson. But the Robinson dimension of (X ,d) is generally smaller. For
instance, if |X |= n and d is the constant dissimilarity, then (X ,d) is Robinson
(its Robinson dimension is 1) although it needs an n−1-dimensional Euclidean
space to be embedded. Moreover, we have:
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Figure 1. A set X with four points x,y,z, t. If (X ,d) is 2-quasi-Robinson with the two
orders represented by the two axis, then no condition is imposed on d(y,z) and we
can set d(y,z)> d(x, t). If (X ,d) is 2-Robinson (with the same orders), then d(y,z)≤
d(x, t).

Proposition 1 The Robinson dimension of a dissimilarity space (X ,d) with
|X |= n is ≤ ⌈log2⌈n

3⌉⌉+1.

Algorithm 1 returns an approximate value for the Robinson dimension of
a dissimilarity space.

Algorithm 1: APPROXIMATE-ROBINSON-DIMENSION

Input: (X ,d), a dissimilarity space.
Output: An upper bound on the Robinson dimension of (X ,d).
begin

X ′ ← X ; k ← 0 ;
SORT-LINES(X ,d) ;
while X ′ ̸= /0 do

S ← MAXIMAL-ROBINSON-SUBSPACE(X ′,d) ;
X ′ ← X ′ \S ;
k ← k+1 ;

return ⌈log2 k⌉+1 ;

The function SORT-LINES(X ,d), for every x ∈ X , sorts the points of X
by increasing values of their distance from x. This function runs in O(n2 logn)
where n= |X |. The function MAXIMAL-ROBINSON-SUBSPACE returns a sub-
set S of X ′, maximal for inclusion and such that (S,d) is Robinson. This can be
easily implemented by a greedy algorithm. We will see in Section 4 that, af-
ter SORT-LINES, such a greedy version of MAXIMAL-ROBINSON-SUBSPACE
runs in O(|X ′|2). So, as there is at most n/3 iterations of the while loop, Algo-
rithm 1 runs in O(n3).
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4 An incremental algorithm to recognize Robinson dissimilarities

In order to implement MAXIMAL-ROBINSON-SUBSPACE, we need a function
ADD-AND-TEST which takes as entry a dissimilarity space (X ,d), a set S ⊂ X
such that (S,d) is Robinson, the PQ-tree TP(S,d) and a point x ∈ X \ S. A
PQ-tree (Booth & Lueker 1976) is a data structure which can encode all the
compatible orders of a Robinson dissimilarity. ADD-AND-TEST returns the
PQ-tree TP(S∪ {x},d) (If (S∪ {x},d) is not Robinson, then TP(S∪ {x},d) =
none). The algorithm of ADD-AND-TEST can be sketched as follows:

1. Compute the sets BS
δ := Bδ(x)∩S.

2. Insert the sets BS
δ into TP (S,d). We get a PQ-tree TP

x(S,d).
3. Add the point x to TP

x(S,d). We get the PQ-tree TP (S∪ {x},d). This
will be done in two steps:

(a) Consider only the points of S the closest from x.
(b) Consider the other points of S.
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ABSTRACT: Dimension-wise scaled normal mixtures (DSNMs; Punzo & Bagnato,
2022) are a recently defined family of d-variate continuous distributions that gener-
alize the multivariate normal (MN) to allow for 1) a more general central symmetry,
and 2) an excess kurtosis that can vary dimension-wise. DSNMs have the further
interesting property, shared by the MN distribution too, that no correlation implies
independence. These peculiarities are obtained in an MN scale mixture framework by
introducing a d-variate mixing random variable with independent and similar compo-
nents acting separately for each dimension.

We introduce parsimonious finite mixtures of DSNMs for model-based cluster-
ing in the presence of symmetric clusters with an amount of excess kurtosis that can
vary in each dimension. For illustrative purposes, we describe two members of the
DSNM mixture family obtained in the case of mixing random variables being ei-
ther uniform or shifted exponential; these are examples of mixing distributions that
guarantee a closed-form expression for the joint density of the DSNM. For the two
described members, we introduce parsimony by putting convenient constraints on the
conditional correlation and scale parameters, as well as on the tailedness parameters.
This gives rise to a family of 60 interpretable models. Depending on the model under
consideration, we describe and use one of two possible variants of the expectation-
maximization algorithm to obtain maximum likelihood estimates of the parameters.
Finally, we consider simulated and real data to appreciate the advantages of our mix-
ture models over well-established mixtures of symmetric heavy-tailed distributions.

KEYWORDS: Central symmetry, Heavy-tailed distributions, Scale mixtures.
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ABSTRACT: A finite mixture model for the unsupervised classification of three-way
ordinal data is proposed. Technically, it is a finite mixture of Gaussians observed
only through a discretization of its variates. Group specific means and covariances are
reparameterized according to parsimonious models. Estimation is carried out through
a composite approach to reduce the computational burden.

KEYWORDS: three-way ordinal data, mixture models, composite likelihood, EM al-
gorithm.

1 Introduction

In a cluster analysis context, finite mixtures of Gaussians are frequently used
to classify a sample of observations (see for example Hennig et al., 2015),
even with complex data structure. This may happens when there are different
types of variables or different occasions, i.e. same observations and variables
measured at different time points or under different experimental settings. The
Gaussian mixture model has been generalized to mixtures of matrix Normal
distributions under a frequentist (Viroli, 2011a) and a Bayesian (Viroli, 2011b)
framework. The main disadvantage of this model is given by the large number
of parameters involved. In the literature, there is a broad consensus in identi-
fying as a possible solution an approach based on performing clustering and
dimensionality reduction simultaneously. Indeed, several authors have already
proposed such methods (see for example: Rocci & Vichi, 2005, Vichi et al.,
2007, Tortora et al., 2016) but only using an optimization approach. In this
paper, we focus on three-way ordinal data following a model based approach.
We assume that the ordinal variables are variates of a mixture only partially
observed through a discretization (Ranalli & Rocci, 2016). This allows us
to capture the cluster structure underlying the data, since each component of
the mixture corresponds to an underlying group. To reduce the dimension-
ality, group-specific mean vectors and group-specific covariance matrices are



265

reparametrized according to parsimonious models that are able to highlight
the discrimination power of both variables and occasions while taking into ac-
count the three-way structure of the data. The presence of ordinal variables
makes the maximum likelihood estimation unfeasible (see for details Ranalli
& Rocci, 2016). To overcome the computational issues due to the presence of
high dimensional integrals, a composite likelihood (Lindsay, 1988) approach
is proposed. The computation of parameter estimates is carried out through an
EM-like algorithm.

2 The model

Let x = [x11,x21, . . . ,xP1, . . . ,x1R,x2R, . . . ,xPR]′ be a random vector of P ordi-
nal variables observed at R different occasions. For each ordinal variable we
observe cp = 1, . . . ,Cp categories with p = 1, . . . ,P in each occasion. Fol-
lowing the underlying response variable approach, the observed ordinal vari-
ables x are considered as a discretization of some continuous latent variables
y = [y11,y21, . . . ,yP1, . . . ,y1R,y2R, . . . ,yPR]′. The relationship between x and y
is

γ(p)
cp−1 ≤ ypr < γ(p)

cp ⇔ xpr = cp,

where −∞ = γ(p)
0 < γ(p)

1 < .. . < γ(p)
Cp−1 < γ(p)

Cp
=+∞ are non observable thresh-

olds defining the Cp categories and constant over the occasions. We assume
that y follows a heteroscedastic Gaussian mixture model, which is only par-
tially observed,

f (y) =
G

∑
g=1

pgφ(y; µµµg,ΣΣΣg), (1)

where φ is the multivariate normal density with mean µµµg and covariance ma-
trix ΣΣΣg, while pg is the group-specific weight, with pg > 0 ∀g = 1, . . . ,G and
∑G

g=1 pg = 1. To reduce the number of parameters, the group-specific covari-
ance matrix is modelled as follows (Browne, 1984)

ΣΣΣg = ΣΣΣO,g ⊗ΣΣΣV,g, (2)

where ⊗ is the Kronecker product of matrices; while ΣΣΣO,g and ΣΣΣV,g represent
the group-specific covariance matrices of occasions and variables, respectively.
The dimensionality reduction is performed on the group-specific mean vectors
following a Tucker2 model (Tucker, 1966). The G× (PR) matrix collecting
the group-specific means is given by

M = (C⊗B)N, (3)
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where N collects the scores of the G groups on the Q latent variables under
S latent occasions, B is the loadings matrix that connects the P variables with
Q latent variables, C is the loadings matrix that connects R occasions with
the S latent occasions. This trilinear model allows us to project the within-
group means, lying into a PR dimensional space, onto a reduced subspace of
dimension QS. The number of parameters can be further reduced by observing
that B can be decomposed as follows,

B =

[
BU
BL

]
=

[
I

BLB−1
U

]
BU = B̃BU

where BU is assumed to be invertible. The same can be done with C, leading
to a more parimonious model for the group-specific mean, that is

M = (C⊗B)N =
[
(C̃CU)⊗ (B̃BU)

]
N

= (C̃⊗ B̃)(CU ⊗BU)N
= (C̃⊗ B̃)Ñ.

For a i.i.d. random sample of size N, the log-likelihood is given by

ℓ(θθθ) =
L

∑
l=1

nl log

[
G

∑
g=1

pgπ(xl; µµµg,ΣΣΣg,γγγ)

]

where xl =(c(1)11 , . . . ,c
(P)
P1 , . . . ,c

(1)
1R , . . . ,c

(P)
PR ) is a particular response pattern with

the frequence nl (∑L
l=1 nn = N) and

π(xl; µµµg,ΣΣΣg,γγγ) =
∫ γ(1)c1

γ(1)c1−1

· · ·
∫ γ(P)cPR

γ(P)c(PR)−1

φ(y; µµµg,Σg)dy

is its probability in the g-th component of the mixture. This likelihood causes
non trivial computational problems due to the presence of multidimensional
integrals. To overcome computational issues, we adopt a composite likelihood,
based on low-dimensional margins.
Further details will be given in the extended version of the paper along with
simulation and real data results to show the effectiveness of the proposal.
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ABSTRACT: The analysis of preference rankings has become an important topic in
the general field of data analysis in recent years. The classic meaning of preference
rankings understood as orders expressed by a series of judges have been joined by the
concept of judges is no longer always understood as human beings, but as resulting
from automatic evaluation procedures. This paper provides a particle swarm-based op-
timization algorithm that provides an accurate solution to the rank aggregation prob-
lem, namely producing a ranking that best synthesizes the orderings stated by each
judge, when the number of items to be evaluated is large

KEYWORDS: Kemeny problem, tied rankings, heuristics, particle swarm optimiza-
tion

1 Introduction

The rank aggregation problem is known to be a NP hard problem. For this
reason, several heuristic solutions have been proposed over the years. For
example:

• Amodio et al., 2016, proposes FAST, an heuristic algorithm based on
QUICK that estimates consensus rankings from aggregate preferences.
Computational efficiency and accuracy are shown with simulations and
real data case studies;

• D’Ambrosio et al., 2017, introduces DECoR, a Differential Evolution
algorithm for Consensus Ranking, able to work with full, partial, and
incomplete rankings. It outperforms previous proposals in both accuracy
and speed while handling large datasets;
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• Aledo et al., 2017, considers the Optimal Bucket Order Problem (OBOP)
by proposing improvements to the standard greedy algorithm (BPA), re-
sulting in improved accuracy and reduced output variance;

• Aledo et al., 2018, presents (1 + λ) evolution strategies for solving OBOP,
with specific mutation operators and initialization methods. Accuracy
improvement with respect to the state-of-the-art algorithm is shown with
simulated data;

• Aledo et al., 2021, proposes greedy algorithms based on sort-first and
cluster-second strategies to efficiently solve OBOP. Accuracy and scala-
bility improvements of the proposed algorithms with respect to the state-
of-the-art algorithm are shown with simulated data;

• Acampora et al., 2021, introduces a memetic algorithm combining ge-
netic algorithms with hill-climbing search for rank aggregation. In par-
ticular, results are compared with the DeCoR algorithm (D’Ambrosio
et al., 2017).

We follow Kemeny’s axiomatic approach (Kemeny, 1959; Kemeny & Snell,
1962), according to which the median (or consensus) ranking is that ranking,
or those rankings, that minimize the sum of the distances between a candidate
ranking belonging to the universe of rankings and the orderings expressed by
a set of judges. Moreover, especially when the number of items to be ranked is
large, we assume that all possible tied rankings are allowed either in the data
matrix containing the orderings or in the final solution. In other words, we as-
sume that tied rankings are not indifference declarations, but they are ‘positive
statements of agreement’ (Emond & Mason, 2002).

2 Particle swarm optimization for preference rankings

We propose a particle swarm optimization algorithm for the rank aggregation
problem (PSORaP). We compared the solutions achieved by the DECoR algo-
rithm (Differential Evolution algorithm for Consensus Ranking, D’Ambrosio
et al., 2017) and our PSOPaR on the USA ranks data set (O’Leary Morgan
& Morgon, 2010), that contains rankings of the 50 US states with respect
to various aspects about the economic and social situation, security, etc., in-
cluded in the internal repository of the R package ConsRank (D’Ambrosio,
2021). Table 1 shows the solutions obtained by the DECoR and our PSO algo-
rithm, evaluated through the τX rank correlation coefficient (Emond & Mason,
2002). The solutions are really similar (DECoR τX = 0.2976688, PSORaP
τX = 0.297449).
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Table 1. Direct comparison of the consensus generated by DECoR and PSO

Rank DECoR PSORaP Rank DECoR PSORaP
1 California California 26 Colorado {Colorado
2 New.York New.York 27 Connecticut Minnesota}
3 Florida Florida 28 Minnesota Alabama
4 Maryland Maryland 29 Alabama {Connecticut
5 Louisiana Louisiana 30 South.Carolina South.Carolina}
6 Illinois New.Mexico 31 Oregon Oregon
7 New.Mexico {Illinois 32 Oklahoma Oklahoma
8 Delaware Texas} 33 Mississipi Mississipi
9 Texas Pennsylvania 34 Arkansas Arkansas
10 Pennsylvania Michigan 35 Hawaii Hawaii
11 Michigan {Georgia 36 Kentucky Kentucky
12 Georgia North.Carolina} 37 {Kansas {Kansas
13 North.Carolina New.Jersey 38 Rhode.Island} Rhode.Island}
14 New.Jersey {Massachusetts 39 Utah Utah
15 Massachusetts Washington} 40 {Iowa {Iowa
16 Washington Nevada 41 Nebraska} Nebraska}
17 Ohio Delaware 42 Wyoming Wyoming
18 Virginia Ohio 43 West.Virginina West.Virginina
19 Tennessee {Arizona 44 Idaho Idaho
20 Nevada Virginia} 45 Maine Maine
21 Arizona Tennessee 46 Montana Montana
22 Missouri Missouri 47 New.Hampshire New.Hampshire
23 Indiana {Alaska 48 South.Dakota South.Dakota
24 Alaska Indiana} 49 Vermont Vermont
25 Wisconsin Wisconsin 50 North.Dakota North.Dakota

The differences between the solutions are mainly that DECoR returns less
tied US states in the first part, with Delaware ranked 8 for DECoR and 17 for
PSORaP.

3 Concluding remarks

In this paper, a particle swarm optimization heuristic algorithm for the rank
aggregation problem has been introduced. A comparison with an already pro-
posed differential evolution algorithm shows that the results are encouraging.
A deeper study of the behavior of PSORaP will be carried out in the future to
better understand how setting the tuning parameters for improving the perfor-
mance of the algorithm in terms of the accuracy of the solution.
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ALEDO, JUAN A, GÁMEZ, JOSÉ A, & ROSETE, ALEJANDRO. 2021. A highly
scalable algorithm for weak rankings aggregation. Information Sciences,
570, 144–171.

AMODIO, SONIA, D’AMBROSIO, ANTONIO, & SICILIANO, ROBERTA.
2016. Accurate algorithms for identifying the median ranking when
dealing with weak and partial rankings under the Kemeny axiomatic ap-
proach. European Journal of Operational Research, 249(2), 667–676.

D’AMBROSIO, ANTONIO. 2021. ConsRank: Compute the Median Ranking(s)
According to the Kemeny’s Axiomatic Approach. R package version 2.1.2.

D’AMBROSIO, ANTONIO, MAZZEO, GIULIO, IORIO, CARMELA, & SICIL-
IANO, ROBERTA. 2017. A differential evolution algorithm for finding the
median ranking under the Kemeny axiomatic approach. Computers &
Operations Research, 82, 126–138.

EMOND, EDWARD J, & MASON, DAVID W. 2002. A new rank correlation
coefficient with application to the consensus ranking problem. Journal of
Multi-Criteria Decision Analysis, 11(1), 17–28.

KEMENY, J.G. 1959. Mathematics without numbers. Daedalus, 88.
KEMENY, J.G., & SNELL, J.L. 1962. Preference rankings: An axiomatic

approach. Pages 9–23 of: KEMENY, J.G., & SNELL, J.L. (eds), Mathe-
matical models in the social sciences. New York: Blaisdell.

O’LEARY MORGAN, K., & MORGON, S. 2010. State Rankings 2010: A
Statistical view of America; Crime State Ranking 2010: Crime Across
America; Health Care State Rankings 2010: Health Care Across Amer-
ica. CQ Press.



273

USING ML TECHNIQUES FOR ESTIMATION WITH
NON-PROBABILISTIC SURVEY DATA

Jorge Rueda1, Maria del Mar Rueda 1, Ramón Ferri1 and Beatriz Cobo2

1 Department of Statistics and O.R., University of Granada, (e-mail:
jorgerueda279@correo.ugr.es, mrueda@ugr.es, rferri@ugr.es)
2 Department of Quantitative Methods for Economics and Business, University of
Granada, (beacr@ugr.es)

ABSTRACT: Online surveys, despite their cost and effort advantages, are particularly
prone to selection bias due to the differences between target population and potentially
covered population. Some techniques have arisen in the last years regarding this issue.
Propensity Score Adjustment, kernel weighting, Statistical Matching (or mass imputa-
tion), double robust estimation and superpopulation modeling are relevant techniques
to mitigate selection bias. These techniques use the sample to train a model capturing
the behaviour of a target variable which is to be estimated, or the propensity of the
units to participate in the volunteer sample. The modeling step has been usually done
with linear regression, but machine learning (ML) algorithms have been pointed out
as promising alternatives. In this study we examine the use of these algorithms in the
nonprobability survey context, in order to evaluate and compare their performance and
adequacy to the problem.

KEYWORDS: survey sampling, non-probability samples, propensity score adjustment,
machine learning.

1 Estimation in non probability surveys

The use of web surveys and big data sources for population inference is an
active research field in social science and survey research. Such data sources
allow to produce statistics cheaper, faster, and on a higher level of detail. How-
ever, these data most often lacks a sampling design, population coverage is in-
complete and the data-generating mechanism is unknown. No valid inferences
can be drawn and new methodologies are needed to evaluate the potential bi-
ases and make accurate estimates of the population parameters.

Different inference procedures are proposed in the literature to correct for se-
lection bias induced by non-random selection mechanisms. There are three im-
portant approaches: the pseudo-design based inference (or pseudo-randomization),
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statistical matching and predictive inference.

Pseudo-randomization and Statistical Matching require, apart from the non-
probability sample, a probability sample to do the adjustments. Propensity
score adjustment (PSA) originally developed for balancing groups in non-
randomized clinical trials (Rosenbaum & Rubin, 1983) is the most used method
for removing bias in nonprobability surveys (Lee & Valliant, 2009). Statistical
Matching was firstly proposed in Rivers, 2007. The difference between both
methods is the sample used in the estimators: PSA estimates the propensity of
each individual of the nonprobability sample to participate in the survey and
then this propensity is used to construct the weights of the estimators, while
Statistical Matching adjusts a prediction model using data from the nonproba-
bility sample, applies it in the probability sample to predict their values for the
target variable y and uses them in the parametric estimators.

Superpopulation modelling requires data from the complete census of the tar-
get population for the covariates used in the adjustment, which is assumed to
be a realization (sample) of a superpopulation where the (unknown) target val-
ues follow a model. The main idea is to fit a regression model on the target
variable with data from the nonprobability sample, and use the model to pre-
dict the values of the target variable for each individual in the population. The
prediction can be used for estimation using a model-based approach or some
alternative versions such as model-assisted and model-calibrated.

Usually the linear regression model is considered for estimation, Em(yi|xi) =
xT

i β, and the predicted values of yi in the probability sample (in the non-
sampled individuals) are used for making estimators in the statistical matching
inference (in the predictive inference). Logistic regression is usually used in
PSA to predict the propensity (probability of the i-th individual of being in-
cluded in the sample), πvi = P(Ivi = 1|xi).

Alternatively to the linear regression models, Machine Learning (ML) methods
have been proposed for the estimation of the propensities and the nonsampled
population values. In situations where additivity and/or linearity do not hold,
ML algorithms are more suitable for regression and classification. Some of
these algorithms, such as decision trees and related (Random Forests, Gra-
dient Boosting Machines) can also take interactions into account without the
need of specifying the terms. The use of some ML algorithms for non proba-
bility samples has been studied in the last few years (e.g. Buelens et al., n.d.,
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Ferri-Garcı́a et al., 2021, Castro-Martı́n et al., 2021. In this work we consider
some of the most important ML algorithms that can be used to define different
estimators for a non-probability sample.
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ABSTRACT: In this work, classification of distributional data is addressed, where
units are described by histogram-valued variables. The proposed approaches aim
at extending the linear discriminant method developed for two-class classification to
multiclass classification. This method is then applied to discrimination of network
models. The goal is to identify the network model used to generate the networks,
considering the distribution of four centrality measures.

KEYWORDS: histogram data, linear discriminant function, Mallows distance, Sym-
bolic Data Analysis.

1 Introduction

The need to analyse complex data makes it necessary to innovate and develop
new statistical methods. In the Symbolic Data Analysis (SDA) framework
the cells of data arrays may contain finite sets of values/categories, intervals
or distributions, representing the variability associated with each unit (Brito,
2014). In Dias et al. , 2021, a linear discriminant method for distributional data
was proposed. The model aims at obtaining a linear combination of features,
now defined by distributions or intervals, that characterize the units and that
allows classifying them in different a priori groups.

2 Histogram-valued variables

This work focus on histogram-valued variables, a particular type of distributional-
valued variables. For each unit i, the observation of this type of variables
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is a histogram X(i) = {IX(i)1, pX(i)1; IX(i)2, pX(i)2; ...; IX(i)m, pX(i)m}, where IX(i)l
represents the subinterval l, pX(i)l is the weight associated with the subinter-
val IX(i)l and ∑m

l=1 pX(i)l = 1. The subinterval IX(i)l may be represented by its
bounds or by its center, cX(i)l and (half)-range, rX(i)l . Within each subinter-
val, a uniform distribution is assumed. Each realisation of the variable can be,
alternatively, represented by the quantile function:

ΨX(i)(t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

cX(i)1 +
(

2t
w1

−1
)

rY (i)1 if 0 ≤ t < w1

cX(i)2 +
(

2(t−w1)
w2−w1

−1
)

rY (i)2 if w1 ≤ t < w2
...

cX(i)m +
(

2(t−wm−1)
1−wm−1

−1
)

rY (i)m if wm−1 ≤ t ≤ 1

(1)

where wiℓ =
ℓ

∑
h=1

ph, ℓ∈ {1, . . . ,m}, and m is the number of subintervals in X(i).

The empirical quantile functions are the inverse of cumulative distribution
functions, which under the uniformity hypothesis are piecewise linear func-
tions with domain [0,1] . Even though the space of the quantile functions is
only a semi-vector space, the arithmetic operations are simpler with this rep-
resentation, which is preferred to represent histogram-valued data.

The Mallows distance is considered as an adequate measure to evaluate
the similarity between distributions. The criterion to be optimized to define
linear models is based on this distance. Assuming that the “values” of the
histogram-valued variables X and Y are represented by the quantile functions
ΨX and ΨY , both with m pieces and the same set of weights, {p1, . . . , pm},
the Mallows distance between them can be written as DM(ΨX(t),ΨY (t)) =√∫ 1

0 (ΨX(t)−ΨY (t))2 dt.
Given a set of n units, we may then compute the barycentric histogram, Xb,

represented by the quantile function ΨXb(t), as the solution of the minimization

problem min
n

∑
i=1

D2
M(ΨX(i)(t),ΨXb(t)). The optimal solution, the barycentric

histogram, Xb, is a histogram where the centre and half range of each subinter-
val ℓ is the classical mean, respectively, of the centres and of the half ranges ℓ,
of all units i (Irpino & Verde, 2006).
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3 Linear Discriminant Analysis

3.1 Linear Discriminant Function

Since the space of quantile functions is a semi-vector space, the definition
of linear combination for histogram-valued variables proposed in Dias et al.
, 2021 uses the quantile function of the observed histograms ΨXj(i)(t), to-
gether with those of the corresponding symmetric histograms −ΨXj(i)(1− t),
j = 1, . . . , p. The score of unit i is the quantile function:

ΨS(i)(t) =
p

∑
j=1

a jΨXj(i)(t)−
p

∑
j=1

b jΨXj(i)(1− t) (2)

with t ∈ [0,1] ; a j,b j ≥ 0, j ∈ {1,2, . . . , p} .
The function to optimize in order to obtain the coefficients of the linear

discriminant function, a j,b j, j = 1, . . . , p, is based on the total inertia decom-
position with respect to a barycentric histogram, defined with the Mallows dis-
tance. Irpino & Verde, 2006 proved that the total inertia may be decomposed
into within and between classes inertia, according to the Huygens theorem.
The coefficients of the discriminant function are then obtained by maximizing
the ratio of the between to the within classes inertia, subject to non-negativity
constraints. This defines a constrained fractional quadratic problem that is
non-convex and finding the global optima requires a high computacional ef-
fort. Softwares like BARON, that use the Branch and Bound technique, may
be used to obtain a good solution. To confirm that the solution is optimal is
only possible using conic relaxation techniques (Dias et al. , 2021).

3.2 Classification

For the classification of a unit in one of the two groups, the Mallows distance
between its score and the score obtained for the barycentric histogram of each
class is computed. The observation is then assigned to the closest class (with
random assignment in case of equality).

When considering more than two a priori classes, there are two ideas that
arise:

1. Divide the multi-class classification dataset into several binary classifica-
tion subproblems. In this case, identifying the best multi-class classifier
involves finding the best binary classifiers. In other words, we are ex-
tending the already existing binary class classifier. Concerning this ap-



279

proach, there are two well-known multi-class classification techniques:
(a) One-Versus-One (OVO); (b) One-Versus-All (OVA).

2. Define several linear discriminant functions, maximizing the same cri-
terion, under the condition that each new discriminant function must be
uncorrelated with all previous ones. This imposes new constraints in
addition to the non-negativity of the coefficients. This idea is referred
to as Consecutive Linear Discriminant Functions (CLDF). This leads to
several score histogram-valued variables with null symbolic linear corre-
lation coefficient.

4 Application - Network Data

The network data was artificially obtained. Fifty six networks were constructed,
considering the Erdős-Renyi, Watts-Strogatz and Barabási-Albert models, with
parameters carefully chosen. Each network is described by the distribution
over the network’s nodes of standard graph measures: nodes’ degree, be-
tweenness centrality, closeness centrality and eigenvector centrality, as done
in Giordano & Brito, 2014. To obtain symbolic data sets aggregations were
performed, where the first-level units were the nodes and the higher-level units
were the network to which the nodes belong. Therefore, the dataset has 168
units and four histogram-valued variables. The classification goal is to identify
the model used to develop each network. The OVA strategy displays the worst
performance, OVO performs extremely well, regardless of the model used to
produce the networks, and tends to perform better than CLDF.
Acknowledgements: This work is financed by National Funds through the Portuguese funding
agency, FCT - Fundação para a Ciência e a Tecnologia, within project LA/P/0063/2020.

References

BRITO, P. 2014. Symbolic Data Analysis: another look at the interaction of
Data Mining and Statistics. WIREs DMKS, 4(4), 281–295.

DIAS, S., BRITO, P., & AMARAL, P. 2021. Discriminant analysis of distri-
butional data via fractional programming. EJOR, 294(1), 206–218.

GIORDANO, G., & BRITO, P. 2014. Social networks as symbolic data. In:
Analysis and Modeling of Complex Data in Behavioral and Social Sci-
ences.

IRPINO, A., & VERDE, R. 2006. A new Wasserstein based distance for the
hierarchical clustering of histogram symbolic data. In: Data Science and
Classification, Proc. IFCS’06.



280

LATENT BAYESIAN CLUSTERING FOR TOPIC
MODELLING
Lorenzo Schiavon 1

1 Department of Economics, Ca’ Foscari University of Venice, (e-mail:
lorenzo.schiavon@unive.it)

ABSTRACT: The main objective in topic modelling is uncovering the underlying
themes present in a corpus of text data. This process is generally constituted by two
phases: (i) identifying the main words associated with each topic; (ii) grouping doc-
uments that contain similar sets of words together. In this work, we exploit recent
advances in Bayesian factor models to represent the high-dimensional space of the
observed words through a set of low-dimensional latent variables, and to jointly clus-
ter the documents according to their distribution over such latent constructs. Groups
and underlying constructs are interpreted as document topics and language concepts,
respectively, with the number of such dimensions that is not required in advance. We
apply the proposed approach to a data set of newspaper headlines.

KEYWORDS: Dirichlet process, infinite factor model,nonparametric Bayes, text data

1 Introduction

Nowadays, the digitalization is making available huge quantities of data, which
require, on one hand, suitable automatized procedure to recognize, classify and
organize such information and, on the other, allows the development and train-
ing of the algorithms to respond to such demand. In particular, it has become
widespread in several field of studies and businesses the necessity of powerful
tools that emulate human being capacity in extracting and summarizing the
information expressed in text data. For instance, in political sciences, the use
of automatic methods applied to large corpus of institutional reports and doc-
uments can represent a fast methodology to uncover and highlight the topics
on which public organizations focus more. Indeed, topic modelling techniques
aim to reveal the underlying semantic structures in large collections of doc-
uments and cluster them in topics. Such methodologies are based on vector
space models that represent each document as a vector. In last decades, sev-
eral techniques has been considered in topic modelling, including low rank
decomposition of the document-term matrix, as non-negative matrix factoriza-
tion, and probabilistic latent semantic analysis, as Latent Dirichlet Allocation.
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Inspired by these approaches and exploiting recent advances in Bayesian non-
parametric models, we propose a factor model able to jointly cluster the doc-
uments in topics and to recover a distinct set of latent concepts. A Bayesian
nonparametric approach allows the number of topics can be inferred along with
posterior distribution, as for the dimension of the latent semantic space. In ad-
dition, we exploit shrinkage prior to promote sparse structures on the low-rank
matrices favouring parsimony and interpretation.

2 Latent mixture model in infinite factorization

We are interested in specifying a model able to provide a parsimonious rep-
resentation of a document-term matrix along both matrix dimensions: on one
hand clustering the documents in few groups, on the other reducing the term-
space to a low-dimensional space of latent concepts. In view of this, we rely
on the general class of latent factor mixture models (LAMB), proposed by
Chandra et al. (2020), which is able to combine a dimensional reduction via
factorization and a suitable use of Bayesian nonparametric framework to clus-
ter the subjects. In particular, considering yi the p-variate vector including a
binary indication on the presence-absence of p terms in the document i, we
adjust the LAMB specification by defining the probit model

yi = (y∗i > 0), y∗i ∼ Np(Ληi, Ip), ηi ∼
∞

∑
k=1

πkNH(µk,∆k), (1)

where Λ is a p×H matrix of factor loadings with H ≪ p. The latent factor
scores ηi = (ηi1, . . . ,ηiH)⊤ are modelled according to an infinite mixture of
Gaussian distributions with {πk}∞

k=1 following a stick-breaking representation

πk = vk ∏
l<k

(1− vl), vl ∼ Beta(1,α). (2)

Then, clusters are determined by the membership of ηi to the posterior kernels.
Differently from Infinite Mixture of Factor Analyser (Murphy et al. , 2020)

models, where observations are clustered over kernels with factorized covari-
ance, LAMB defines the clustering over the low-dimensional space of latent
constructs ensuring parsimony in the dimension of cluster-specific parameters.
In addition, having a unique loadings matrix shared by the different clusters
aids the interpretation of the latent factors as language concepts such that each
of them explains the presence or absence of several terms belonging to the
same semantic area.
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In view of this, we carefully specify the prior of the loadings matrix Λ. We
use the cumulative shrinkage process (CUSP) proposed by Legramanti et al.
(2020), which exploits an over-parameterized model with an infinite number
of factors and increasing probability of loadings being shrunk as the column
index increases. In particular, we specify a spike and slab construction over the
columns of Λ with spike probability mass ϖh increasing over the column index
according to a stick-breaking construction. To allow for a local behaviour, we
follow Schiavon et al. (2022) including a Bernoulli local scale φ jh ∼ Ber(cp)
in the variance of each element λ jh. The mean cp ∈ (0,1) is set equal to a small
positive offset to guarantee sparsity when p is large. Formally, we assume

λ jh ∼ N(0,θh), θh = φ jhρh(ϑh −θ∞)+θ∞ (3)
ρh ∼ Ber(1−ϖh), ϑ−1

h ∼ Ga(aθ,bθ), (4)

with θ∞ a positive constant close to zero. Posterior distribution is approximated
via MCMC exploiting an adaptive Gibbs sampling strategy.

3 Latent topic extraction

To illustrate the validity of our approach, we initially apply the model to a set
of n = 213 newspaper sport headlines published by two newspapers of GEDI∗
in Autumn 2021. After removing the stopwords, we frame the headlines in a
document-term matrix. Considering only the unigram and bigram which recur
at least twice in the corpus, we obtain a binary matrix y registering the presence
or absence of p = 522 distinct terms.

We follow Chandra et al. (2020) and Schiavon et al. (2022) to set the
hyper-parameters. The offset cp is set equal to the average word frequency
in y. After running the MCMC algorithm, we recover meaningful posterior
summary of the low-rank matrices Λ and η, we compute the posterior means
only after having aligned the posterior samples. The algorithm estimates a
nine latent factors model with 19 topics. Each factor can be interpreted as a
concept characterized by high loadings in correspondence of terms belonging
to a specific semantic area. Figure 1 reports a graph representation of the
partial correlation matrix between the terms. Every term j, for j = 1, . . . , p
is coloured according to its characterizing concept—i.e. argmaxh∈{1,...,9}λ jh—
while the legend reports the term with the highest loading for every latent
concept. As one may expect, different concepts refer to different sports or

∗GEDI Gruppo Editoriale S.p.A. is an Italian media conglomerate based in Turin.
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ABSTRACT: Multi-view clustering methods are essential for the stratification of pa-
tients into sub-groups of similar molecular characteristics. Recently, a wide range of
methods has been developed for this purpose. However, due to the high diversity of
cancer-related data, a single method may not perform sufficiently well in all instances.
We present a multi-view hierarchical ensemble clustering framework of methods. We
apply and validate it on real-world multi-view cancer patient data. Our approach out-
performs the current state-of-the-art in all but one case. It is integrated into our Python
package Pyrea [https://github.com/mdbloice/Pyrea].

KEYWORDS: multi-view clustering, ensemble clustering, hierarchical clustering, multi-
omics, disease subtyping

1 Introduction

Multi-view data contain information relevant for the identification of patterns
or clusters that allow us to specify groups of subjects or objects. This presen-
tation is based on (Pfeifer et al., 2023) with a focus on patients for which we
have bio-medical and/or clinical observations describing their characteristics
obtained from various diagnostic procedures or different molecular technolo-
gies. The different types of subject characteristics constitute views related to
the patients of interest. Integrative clustering of these views facilitates the de-
tection of patient groups, with the advantage of improved clinical diagnostic
and treatment schemes.

Simple integration of single view clustering results is not appropriate for
the diversity and complexity of available medical information. Even state-of-
the-art multi-view approaches have their limitations, although ensemble clus-
tering has the potential to overcome some of them (Alqurashi & Wang, 2019).
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Data views can stem from highly heterogeneous input sources. Therefore, each
view needs to be clustered with the most adequate strategy. Multi-view clus-
tering methods are widely applied within the bio-medical domain, where often
molecular data are retrieved from different biological layers for the same set
of patients. Those clusters inferred from these multi-omics observations facili-
tate the stratification of cancer patients into sub-groups, providing a useful tool
towards precision medicine.

There are two basic types of a multi-view clustering integration, one hori-
zontal and the other vertical (Richardson et al., 2016). Horizontal integration
is the aggregation of homogeneous data views, while vertical integration en-
tails the joint analysis of heterogeneous data views from the same group of
patients. When data are highly diverse with respect to their probability distri-
butions, problems can arise in vertical integration. Simple data concatenation
and the application of single-view methods are most likely to produce biased
results.

Clustering ensembles and multi-view clustering methods should provide
more robust and accurate clustering results compared to an individual clus-
tering algorithm. A wide range of multi-view clustering methods has been
developed, for instance (Xue et al., 2019), (Liu et al., 2021), and (Yang et al.,
2022). Other recent approaches, e. g. (Rappoport & Shamir, 2019), (John
et al., 2020), and (Pfeifer & Schimek, 2021), have specialised in biomedical
applications such as disease subtype detection. However, only a few contri-
butions have investigated the possibility of combining the strengths of both
ensemble clustering and multi-view clustering to further improve consistency
and accuracy. Here, in contrast to the above-mentioned as well as many other
methods, we aim at a generic theoretical and practical framework to enhance
flexible ensemble-based multi-view clustering. Our framework is flexible with
regard to those clustering techniques that are most suitable for the considered
data. Furthermore, the framework allows to construct arbitrarily complex en-
semble architectures.

2 The ensemble architecture and proposed methodology

Each view V ∈Rn×p is associated with a specific clustering method c, where n
is the number of samples and p is the number of predictors. In total let us have
N data views. An ensemble, called E , can be modelled using a set of views
V and an associated fusion algorithm f . Let us have V ←! {(V ∈ Rn×p,c)},
E(V , f ) 2→ Ṽ ∈ Rn×n, and V ←! {(Ṽ ∈ Rn×n,c)}. From these equations we
can see that a specified ensemble E creates a view Ṽ ∈ Rn×n which again can
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be used to specify V , including an associated clustering algorithm c. With this
concept it is possible to stack layer-wise views and ensembles into arbitrarily
complex ensemble architectures. It should be noted, however, that the resulting
view of a specified ensemble E forms an affinity matrix of dimension n× n,
and thus only those clustering methods which are compatible with an affinity
or distance matrix as input are applicable. The data views are clustered with
up to N different hierarchical clustering methods hc1,hc2, . . . ,hcN , where N is
the number of views. The best combination of clustering methods is inferred
by a genetic algorithm, where the silhouette coefficient is adopted as a fitness
function. For technical details see (Pfeifer & Schimek, 2021). The Pareahc
ensemble approach comprises two different strategies: Parea1

hc is limited to
the application of two selected hierarchical clustering methods, while Parea2

hc
allows for a variation of hierarchical clustering methods in the data fusion
process. Based on machine learning benchmark data sets, a comparison with
state-of-the-art methods, such as multi-view spectral clustering and multi-view
k-means clustering, was carried out in support of the described approach.

3 Multi-omics clustering for disease subtype discovery

We applied our methodology to a set of real patient data, often used as bench-
mark data (Rappoport & Shamir, 2018), of seven different cancer types, namely
glioblastoma multiforme (GBM), kidney renal clear cell carcinoma (KIRC),
liver hepatocellular carcinoma (LIHC), skin cutaneous melanoma (SKCM),
ovarian serous cystadenocarcinoma (OV), sarcoma (SARC), and acute myeloid
leukemia (AML), aiming at the externally known survival outcome. The Pareahc
ensemble approach was studied on multi-omics data, including gene expres-
sion (mRNA), DNA methylation, and micro-RNA. Pareahc was compared
with SNF (Wang et al., 2014), NEMO (Rappoport & Shamir, 2019), HCfused
(Pfeifer & Schimek, 2021), and PINSplus (Nguyen et al., 2019). It is impor-
tant to mention that the cancer patients were exclusively clustered based on
their genomic footprints.

The survival data of all patients were used for the validation of the obtained
patient clusters. For the quantification of differences between the studied meth-
ods, the Cox log-rank test was applied. The obtained p-values are displayed
in Table 1. Our Pareahc ensembles outperform the alternative approaches in
almost all cases. SKCM is the only cancer type for which HCfused achieved
a superior result. Notably, the spectral-based clustering methods NEMO and
SNF performed poorly.
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Table 1. Survival analysis of TCGA cancer group clusters

Cancer type Sample size SNF PINSplus NEMO HCfused Parea1
hc Parea2

hc
GBM 538 0.1304 0.2223 0.0347 0.0997 0.0447 0.0347
KIRC 606 0.3962 0.4005 0.3464 0.0561 0.0137 0.0400
LIHC 423 0.5357 0.6731 0.4354 0.2062 0.0334 0.0436
SKCM 473 0.5153 0.3956 0.4565 0.0699 0.1677 0.1629
OV 307 0.4042 0.5300 0.3593 0.2594 0.1685 0.2870
SARC 265 0.1622 0.2024 0.0979 0.0408 0.0076 0.0109
AML 173 0.0604 0.1973 0.0440 0.1148 0.0167 0.0502
Results based on (Pfeifer et al., 2023): Median p-values of the Cox log-rank test. Significant

results (α = 0.05) for the separation of patient cluster survival curves in bold.
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ABSTRACT: Nowadays, the availability of a huge amount of data produced by a wide
range of new technologies is increasing. However, data obtainable from these sources
are often the result of a non-probability sampling process. We propose a method to
reduce the selection bias associated with the big data in the context of Small Area
Estimation. Our approach is based on data integration and it combines a big data
sample and a probability sample. Real data examples are considered in the context
of Italian enterprises sensitiveness towards Sustainable Development Goals and e-
commerce.

KEYWORDS: official statistics, big data, data integration, SDGs, e-commerce.

1 Introduction

For many decades probability surveys have been the standard for producing
official statistics. However, the decline in response rates in probability surveys
associated with the increasing cost of data collection have become big issues
for producing official statistics. Due to technological innovations, over the
past decade, there has been an unprecedented increase in the volume of “new”
data, called big data, which are often the results of non-probability sampling
processes but, at the same time, they offer very rich data sets. Anyway the
“nature” itself of the data, as collected without a probability scheme, opens the
door to possible selection bias, even at domain level.
Although, there is a trend to modernize official statistics through a more ex-
tensive use of big data, making reliable inferences from a non-probability
sample alone is very challenging and a naive use of these data can lead to
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biased estimates as affected by selection bias and measurement error. The
Italian National Statistical Institute has a strategic program of investments on
the use of these new data sources to complement and enrich official statis-
tics. In this context a roadmap document, named “Roadmap for Trusted Smart
Statistics”(RTSS), has been released. This work must be laid in the method-
ological action of the RTSS related to quality improvement by reducing non-
representativeness of Big Data sources at survey unplanned domain level.

2 Notation

We consider a population U of size N divided into m non-overlapping subsets
Ui of size Ni, i = 1, . . . ,m. Let yi j denote the value of the target variable for
the unit j belonging to the area i. A non-probability sample B is available for
the target population, with B ⊂U . We assume that the non-probability sample
is available in each area of interest: Bi is the non-probability sample in the
area i, Bi ⊂Ui. We denote the inclusion indicator in Bi as δi j; in other words,
δi j = 1 if j ∈Bi, δi j = 0 otherwise; therefore NBi =∑Ni

j=1 δi j. The study variable
yi j is observed only when δi j = 1. The non-probability sample contains other
auxiliary variables, denoted by x.

A survey data of size n, denoted by A, is also available; Ai ∈Ui drawn ran-
domly. The survey data do not contain the variable of interest but contain only
the auxiliary variables x. The area-specific samples Ai are available in each
area, but the number of sample units in each area, ni > 0, is limited. Therefore,
the areas of interest can be denoted as “small areas”. In general, an area is
regarded as “small” if the domain-specific sample size is not large enough to
obtain direct estimates with acceptable statistical significance. In these cases,
SAE techniques need to be employed.
In summary, the available data can be denoted by {(yi j,xi j), i∈B} and {(xi j), i∈
A}, and the quantities of interest are the area means Ȳi = N−1

i ∑ j∈Ui yi j, i =
1, . . . ,m. By using B we can estimate Ȳi by:

ȲBi = N−1
Bi ∑

j∈Bi

yi j,

where NBi = ∑Ni
j=1 δi j and yi j is the jth observation in the area i. Because of

the selection bias and the measurement error, the sample mean ȲBi from the
non-probability sample is biased, and it does not represent the target popula-
tion (Kim & Wang, 2019). Therefore, we propose a techniques in order to
make valid inference from big data sources when the aim is to provide reliable
estimates at small area level.
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3 Reducing selection bias in big data: a data integration approach
using SAE methods

We consider a data integration method for combining probability and non-
probability samples in order to reduce the bias which is assisted by unit level
small area model, following the approach of Kim and Wan (2019). We con-
sider the case in which the survey data and the big data are available in each
small area of interest. We also assume that the selection mechanism for the big
data is non-informative :

P(δi j = 1|xi j,yi j;ui) = P(δi j = 1|xi j;ui)

where ui is an area-specific random effect characterizing the between-area
differences in the distribution of yi j given the covariates xi j.

Moreover, we can observe δi j, the big data sample inclusion indicator, from
the sample A. We can use the data {(δi j,xi j)} ∈ Ai to fit a model for the for the
propensity scores P(δi j = 1|xi j) = p(x,λ) in sample B based on the missing at
random. Usually, a logistic regression model for the binary variable δi j can be
used in order to obtain estimators p̂i j in sample B.

In order to take into account the hierarchical structure of the data, we con-
sider the following generalized linear random intercept model for the propen-
sity scores:

p̂i j(λ̂, ûi) = g−1(xT
i jλ̂+ ûi),

where g(·) is a logit link function; λ̂ and ûi are the ML estimates of λ and
ui.

To develop our estimator we suppose that the following working popula-
tion model holds for sample B:

E[yi j|xi j,γi] = µi j = h−1 (xT
i jβ+ γi

)
, (1)

where h(·) is the link function, assumed to be known and invertible, γi is the
area-specific random effect for area i characterizing the between-area differ-
ences in the distribution of yi j given the covariates xi j. It should be noted that
the covariates used here could be different from those used to fit the propensity
model. Model in equation (1) includes three important special cases: the linear
model obtained with h(·) equal to the identity function and yi j is a continuous
variable; logistic generalized linear random intercept model, where h(·) is the
logistic link function and the outcome variable is binomial; the Poisson-log
generalized linear random intercept model where h(·) is the log link function
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and the individual yi j values are taken to be independent Poisson random vari-
able. Using data from the big data sample B, assuming the model is correctly
specified, we obtain an estimator of β̂ which is consistent for β (Rao, 2021).
Then a doubly robust (DR) estimator of the mean is given by:

θ̂EBLUP
i;DR =

1
Ni

{

∑
j∈Bi

1
p̂i j(λ̂, ûi)

(yi j − µ̂i j)+
Ni

ni
∑
j∈Ai

µ̂i j

}
, (2)

where µ̂i j = h−1
(

xi jβ̂+ γ̂i

)
and β̂ and γ̂i are respectively the estimated

regression coefficients and the random effects based on the big data sample.
The estimator in Eq. (2) is DR in the sense that it is consistent if both the

model for propensity scores and the model for the study variable are correctly
specified (Kim & Wang, 2019, Rao, 2021).

4 Real data examples

The proposed methodology has been applied to estimate the proportion of
enterprises sensitive to Sustainable Development Goals (SDGs) of the 2030
Agenda at the provincial level in Italy. The Big Data sample is represented by
the enterprises’ websites accessed due to a web scraping procedure. The prob-
abilistic sample dataset is a sub-sample of the survey “Situazione e prospettive
delle imprese nell’emergenza sanitaria Covid-19” (2020). The target variable
is a binary indicator computed for each enterprise and represents if the enter-
prise is sensitive or not to SDGs. This indicator has been computed through
machine learning methods by analyzing the big data sample and looking for a
set of pre-defined SDGs-related words on each website. Furthermore, an ap-
plication related to the diffusion of e-commerce in Italian companies, using the
same data of the application on sustainability, will be considered.
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ABSTRACT: The classical data representation model is too restrictive when the data
to be analysed are not real numbers but comprise variability. In this talk, we are in-
terested in numerical distributional data, where units are described by histogram or
interval-valued variables. We consider parametric probabilistic models, which are
based on the representation of each distribution by a location measure and interquan-
tile ranges. A multivariate outlier detection method is proposed that makes use of
restricted configurations for the covariance matrix, and is based on a sparse robust
estimator of its inverse. The computations rely on an efficient adaptation of the graph-
ical lasso algorithm. A simulation study puts in evidence the usefulness of the robust
estimates for outlier detection.

KEYWORDS: outliers, robust statistics, distributional data, Mahalanobis distance,
graphical lasso

1 Introduction

Multivariate datasets often include atypical data points known as outliers, i.e.
points that deviate from the main pattern. Outlier detection is important be-
cause outlying data points may reveal nonconforming phenomena and the re-
sults of usual multivariate methods can be heavily influenced by them.

In this paper we address the problem of outlier detection in multivariate
distributional data. Distributional data may result from the aggregation of large
amounts of open/collected/generated data, or may be directly available in a
structured or unstructured form, describing the variability of some features.
In recent years, different approaches have been investigated and methods pro-
posed for the analysis of such data. However, most existing methods rely on
non-parametric descriptive approaches.
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A common approach for multivariate outlier detection measures outlying-
ness by Mahalanobis distances. Given a sample of n observations, a point i is
considered an outlier if its distance D2

µ̂,Θ̂(i) from an appropriate mean estimate,

µ̂, is above a relevant threshold. Here, Θ̂ is an estimate of the precision ma-
trix, Θ = Σ−1, and Σ denotes the population covariance. However, if µ̂ and Θ̂
are chosen to be the classical sample mean vector and inverse covariance ma-
trix, S−1, this procedure is not reliable, as D2

µ̂,Θ̂(i) may be strongly affected by
atypical observations. Furthermore, S−1 has a large sample variability when its
dimension, d, is close to n, and it is is not even computable when d > n. To ad-
dress these issues Öllerer and Croux (Öllerer & Croux, 2015), proposed sparse
precision matrix estimators based on the GLASSO L1-penalized log-likelihood
function (Friedman et al. , 2008).

In this paper we address the problem of outlier detection in distributional
data, combining Öllerer and Croux estimators with a parametric modelling of
distributional data, along the lines of Brito & Duarte Silva, 2012, and
Duarte Silva et al. , 2018.

2 Distributional Variables

Let S = {s1, . . . ,sn}, be the set of n units under analysis. We consider that for
each unit, the descriptive variables are (in general) not constant, but present
variability.

We represent the “values” of a numerical distributional variable by an or-
dered vector of quantiles, always including the minimum and the maximum.
Formally, a numerical distributional variable is defined by an application

Y : S → T
si → Y (si) = (Mini,ψ1i, . . . ,ψqi,Maxi)

Let Y1, . . . ,Yp be the p numerical distributional variables, defined on S.
Here we assume that all variables are represented by the same set of q+ 2
quantiles, and that Mini j < ψ1i j < .. . < ψqi j < Maxi j, 1 ≤ i ≤ n, 1 ≤ j ≤ p
(strict inequalities).

The model consists in representing Yj(si) by

• a central statistic Ci j, typically the Median Medi j or the MidPoint Maxi j+Mini j
2

• the [Min,ψ1[ range: R1i j = ψ1i j −Mini j
• the [ψ1,ψ2[ range: R2i j = ψ2i j −ψ1i j
• . . .
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• the [ψq,Max[ range: Rmi j = Maxi j −ψqi j

Typical cases consist in using the median, or else the midpoint, as central
statistics, and quartiles, or other equally-spaced quantiles.

The proposed model consists in assuming that the joint distribution of the
central statistic C and the logarithms of the ranges R∗

ℓ ,ℓ= 1, . . . ,m, is Gaussian:

(C,R∗
1, . . . ,R

∗
m)∼ N(m+1)p(µ,Σ)

In the most general formulation (configuration 1) we allow for non-zero
correlations among all central statistics and log-ranges; for distributional vari-
ables there are however other cases of interest: the distributional-valued vari-
ables Yj are non-correlated, but for each variable, the central statistic and all
its log-ranges may be correlated among themselves (configuration 2); central
statistics (respectively, log-ranges) of different variables may be correlated, but
no correlation between central statistics and log-ranges is allowed (configura-
tion 3); central statistics (respectively, each log-range) of different variables
may be correlated, but no correlation between central statistics and log-ranges
or between non-corresponding log-ranges is allowed (configuration 4); and,
finally, all central statistics and log-ranges are non-correlated (configuration
5).

3 Outlier Detection of Distributional Data

Let Xi =
[
Ct

i ,R
∗
1i

t , . . . ,R∗
mi

t]t be the d = (m+ 1)p dimensional column vector
comprising all central statistics and log-ranges for si, i = 1, . . . ,n.

The identification of outliers is based on robust Mahalanobis distances,
D2

µ̂,Θ̂(i) = (xi− µ̂)tΘ̂(xi− µ̂) from each data point to a robust location vector, µ̂,
which are then compared with the 97.5% quantile of a chi-squared distribution
with d-degrees of freedom. In our approach we choose as location vector, the
L1 median (Fritz et al. , 2012), which has a break-down point of 0.5 and, given
our Gaussian assumption, is a robust estimator of µ.

Following Öllerer and Croux (2015) we estimate Θ = Σ−1 by

Θ̂ = argmaxΘ∈ϑ logdet(Θ)− tr(Σ̂Θ)−ρ
d

∑
j,k=1

|(Θ) jk| (1)

where ϑ := {Θ ∈Rd×d : Θ ≻ 0} is the space of d-dimensional positive-definite
matrices, Σ̂ is a robust covariance estimate, and ρ a regularization parameter.

For each covariance configuration, we set the null elements of Σ to zero in
its initial Σ̂ estimate, and for the remaining elements we use the formula
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Σ̂ j,k = scale(X j)scale(Xk)r(X j,Xk) (2)

where X j,Xk are the jth and kth columns of X , scale(X j),scale(Xk) are ro-
bust scale estimators (see Rousseeuw & Croux, 1993), and r(X j,Xk) is the
Gaussian rank correlation (Boudt et al. , 2012) between X j and Xk.

The above procedure was evaluated in a controlled simulation experiment
that showed promising results for the proposed approach.
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ABSTRACT: In the analysis of spatial transcriptomic experiments, the recently pro-
posed SpaRTaCo model (Sottosanti & Risso, 2022) allows for the simultaneous clus-
tering of genes and cells of a tissue sample, providing interesting insights abouve the
underlying biological processes. In this work, we discuss how to integrate external
knowledge such as manual cell-type annotations to inform gene clustering, with the
by-product of substantially reducing the computational burden.

KEYWORDS: clustering, genomics, spatial statistics, spatial transcriptomics.

1 Introduction

Spatial transcriptomics is an innovative class of sequencing technologies, capa-
ble of providing the expression levels of thousands of genes in a tissue sample
while retaining the spatial conformation of the analyzed tissue. With the aid of
additional spatial information, researchers can better understand the complex
biological processes that depend on the cellular organization of the tissue. New
insights come from the discovery of spatially expressed (s.e.) genes, i.e., genes
that exhibit specific patterns of variation in space (Svensson et al., 2018).

Recently, we proposed SpaRTaCo (Sottosanti & Risso, 2022), a co-clustering
model for spatial transcriptomic experiments, which has shown to be capable
of determining s.e. genes active only in specific areas of a sample, provid-
ing insights that could not be achieved by competing methods in the literature.
Clearly, it represents a useful tool for spatial transcriptomic data analysis; nev-
ertheless, its estimation process is highly computationally demanding.

Here, we propose a modification of the original SpaRTaCo formulation
that integrates external biological knowledge to speed up the computation. In
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fact, spatial experiments often come with a manual annotation of the cellular
composition of a sample made by a pathologist, providing a relevant source of
information that can be integrated into the inferential process. Furthermore, we
propose to estimate SpaRTaCo with a penalized maximum likelihood approach
to prevent the model from capturing spurious spatial correlation, retaining rel-
evant patterns only. We conclude with the analysis of a prostate cancer tissue
sample analyzed with a recent spatial transcriptomic technology.

2 The semi-supervised SpaRTaCo with L1 and L2 penalizations

Let X be the n× p matrix of a spatial experiment having the expression of
n genes measured over p spots, whose spatial locations are known. SpaR-
TaCo assumes the existence of K gene clusters and R spot clusters, inducing
a partition of the experiment matrix into K ×R blocks. Thus, the kr-th block
has dimension dim(Xkr) = nk × pr, and X =

(
Xkr), with k = 1, . . . ,K and

r = 1, . . . ,R. The expression of the i-th gene with the kr-th block distributes as

xkr
i. |σ2

kr,i ∼ Npr

(
µkr1pr ,σ2

kr,i∆∆∆kr
)
, σ2

kr,i ∼ I G(αkr,βkr) (1)

where µkr is a mean parameter, 1pr is a vector of ones of length pr, σ2
kr,i is a

gene-specific variance, and ∆∆∆kr is the covariance matrix of the spots with form

∆∆∆kr = τkrK (Sr;φr)+ξkr pr . (2)

Notice that ∆∆∆kr is expressed as a linear combination of two matrix terms: the
first is a kernel matrix with isotropic spatial covariance function k(·;φr) that
models the gene expression correlation across the spots of cluster r (with spa-
tial coordinates Sr = (s j)), the second is an identity matrix of size pr. The pa-
rameters τkr and ξkr quantify the amount of spatial variation and residual intra-
block variability, respectively. Moreover, the quantity τkr/ξkr can be used to
measure the amount of spatial variability compared to the residual variability,
and for this reason it is called spatial signal-to-noise ratio. Last, the param-
eter σ2

kr,i in (1) is used to model the variance specific of gene i in the kr-th to
account for the possible dependence across genes in the same cluster.

Even though SpaRTaCo is designed for clustering both rows (genes) and
columns (cells) of X, when a manual annotation of the tissue image is avail-
able, we can include it in the model in place of the column clustering labels
to inform the inferential process. In addition, to improve the stability of pa-
rameter estimation, we can estimate the model with a penalized maximum
likelihood approach. A lasso penalty on the parameters τkr discourages the
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where W is the vector containing the spot clustering labels
data, logL (Θ,Z|X,W ) is the classification log-likelihood,
the penalization terms associated to the τ and µ parameters,
ulation studies not reported here showed that λµµ = 1.5 and
robust parameter estimates and prevent the model from capturing spurious spa-
tial correlation. Notice that the parameters ξkr are not estimated, but are fixed
a priori, for identifiability reasons. An exact solution to the tion of
(3) can be obtained using a classification EM algorithm.

3 Application to human prostate cancer data

Wee analyze a human prostate tissue diagnosed with adenocarcinoma pro-
cessed with Viisium platform (Righelli et al., 2022). The slide was man-
ually annotated by the pathologist Dr. Esposito Veeneto Oncology Institute,
Italy), by analyzing microscope images that consider the cytoarchitecture of
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the cells, i.e., the spatial organization and arrangement of cells within the tis-
sue. Based on these characteristics, the tissue was divided into four macro
categories: fibroblasts, glands, stroma, and tumour (Figure 1, left). After pre-
liminary gene filtering and count normalization (Townes et al., 2019), the final
dataset had 1000 genes measured over 4366 locations (spots).

We estimated the semi-supervised SpaRTaCo using K ∈ {1, . . . ,9} and, af-
ter evaluating the integrated complete log-likelihood criterion and the cluster-
ing uncertainties (Sottosanti & Risso, 2022, Section 3.3 and 3.4), we selected
the model with K = 5 gene clusters. The first two clusters that the model iden-
tifies have a substantial spatial variability in all tissue areas (τ̂kr/ξ̂kr > 1.5, for
k = 1,2 and ∀r) and particularly pronounced in the tumour area (τ̂14/ξ̂14 =
7.12, τ̂24/ξ̂24 = 2.46). In comparison, the remaining three gene clusters have
moderate or absent spatial variability throughout the tissue and show substan-
tial differences only at the mean level.

Thanks to gene-specific variance parameters σ2
kr,i, we can provide a list of

the most variable genes in every tissue area. As an example, the gene VIM
appeared among the 20 most variable genes in the stromal region (Figure 1,
right). VIM is a cancer growth promoter gene, and therefore, from this ob-
served expression pattern, it can provide helpful information about the nature
of the tumour and be the starting point for biological investigations. Alterna-
tive algorithms for selecting highly variable genes (e.g., Townes et al., 2019)
do not include VIM among the top 80 most informative genes, showing the
importance of accounting for the spatial variability of the data in the analysis.
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ABSTRACT: In sparse longitudinal data, we only have a few measurements on irreg-
ularly spaced time points from a hidden continuous stochastic process (trajectory) for
each subject. The prediction of individual trajectories is sometimes useful for func-
tional data analysis of such data, and the properties of the reconstructed trajectories
play important roles in theoretical analysis. When we have measurements on a dense
grid of time points for each subject, we can reconstruct the individual trajectories in-
dependently. However, for sparse longitudinal data, we often use the reconstruction
method (Yao et al. , 2005) based on functional principal component analysis (FPCA).
In this case, the predicted trajectories are not independent. In this complicated situ-
ation, we demonstrate some fundamental properties of the individual trajectories re-
constructed by FPCA.

KEYWORDS: functional data analysis, weak convergence.
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ABSTRACT: Gaussian graphical models (GGMs) serve as a means of summarizing
conditional dependencies among a set of p variables. Such models are structured as
networks, in which nodes represent individual variables and edges denote the presence
of conditional dependence between two variables. Estimating GGMs in cases where
the sample size n is smaller than the number of variables (n < p) can present a chal-
lenge. To address this issue, existing estimation methods frequently rely on applying
regularization techniques to the edges within the network, with the aim of obtaining
a sparse network where many variables are represented as conditionally independent
(see, e.g., Cai et al., 2011; Friedman et al., 2008; Meinshausen & Bühlmann, 2006;
Peng et al., 2009; Rothman et al., 2008; Yuan, 2010).

Nevertheless, relying solely on edge sparsity does have limitations. First, when
the number of variables is substantially larger than the sample size (n ≪ p), the con-
ditional dependencies between variables may become too weak to detect (Eisenach
et al., 2020). Second, sparse GGMs that include many variables can still contain a
substantial number of edges, making interpretation difficult (Grechkin et al., 2015).
Last, real-world networks often exhibit more complex structures than mere edge spar-
sity (Heinävaara et al., 2016; Hosseini & Lee, 2016).

To overcome these challenges, node aggregation has emerged as a means to per-
form dimension reduction in GGMs (see, e.g., Hosseini & Lee, 2016; Pircalabelu &
Claeskens, 2020; Tarzanagh & Michailidis, 2018; Wilms & Bien, 2022). For example,
instead of estimating the conditional dependencies between all observed variables, one
may be interested in identifying the dependencies among a smaller number of clus-
ters that share the same behavior. To achieve this, we propose the clusterpath GGM
(CGGM), a model-based convex clustering Gaussian graphical model that automati-
cally clusters groups of variables by means of the penalty structure used in the convex
clustering literature (Hocking et al., 2011; Lindsten et al., 2011; Pelckmans et al.,
2005).

KEYWORDS: convex clustering, dimension reduction, graphical modeling, regulati-
zation
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ABSTRACT: In recent years, there has been an increasing interest in building machine-
learning systems that perform adequately when the training and test data differ. In the
context of supervised learning, this problem has been addressed within the distribu-
tionally robust framework wherein the ambiguity set for the test distributions is al-
lowed to vary within a neighborhood of the training distribution. While such methods
are useful, the tradeoff between statistical efficiency and robustness remains unclear.
Focusing on the out-of-distribution generalization problem, in this presentation, we
describe a precise notion of statistical efficiency and relate the loss of efficiency to the
gain in robustness in these contexts. We illustrate our ideas with examples from label
shift estimation arising in diagnostic problems, privacy and utility in healthcare, and
generalized adversarial networks.
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OPTIMAL AND ROBUST COMBINATION OF
FORECASTS VIA CONSTRAINED OPTIMIZATION AND

SHRINKAGE
Frédéric Vrins 1
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ABSTRACT: We introduce various methods that combine forecasts using constrained
optimization with penalty. A non-negativity constraint is imposed on the weights,
and several penalties are considered, taking the form of a divergence from a ref-
erence combination scheme. In contrast with most of the existing approaches, our
framework performs forecast selection and combination in one step, allowing for po-
tentially sparse combining schemes. Moreover, by exploiting the analogy between
forecasts combination and portfolio optimization, we provide the analytical expres-
sion of the optimal penalty strength when penalizing with the L2-divergence from the
equally-weighted scheme. An extensive simulation study and two empirical appli-
cations allow us to investigate the impact of the divergence function, the reference
scheme, and the non-negativity constraint on the predictive performance. Our results
suggest that the proposed models outperform those considered in previous studies.

KEYWORDS: Combination of forecasts, optimization, shrinkage
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ABSTRACT: Measurement invariance across items is key to the validity of instruments 
like a survey questionnaire or an educational test. 

 
KEYWORDS: latent classes, measurement invariance, EM algorithm. 

 
 
Differential item functioning (DIF) analysis is typically conducted to assess 

measurement invariance at the item level. Traditional DIF analysis methods require 
knowing the comparison groups (reference and focal groups) and anchor items (a 
subset of DIF-free items) (see e.g Millsap, 2011). Such prior knowledge may not 
always be available, and psychometric methods have been proposed for DIF analysis 
when one piece of information is unknown. 

The paper proposes a method for the case when both the anchor items and the 
groups are unknown. The proposed framework combines ideas of mixture IRT 
modeling for latent DIF analysis and regularised estimation for manifest DIF 
analysis with unknown anchor items. More specifically, the unknown groups are 
modelled by latent classes, and the DIF effects are characterised by item-specific 
DIF parameters. An $L_1$-regularised marginal maximum likelihood estimator is 
proposed, assuming that the number of DIF items is relatively small. This estimator 
penalises the DIF parameters by a Lasso regularisation term, so that the DIF items 
can be selected by the non-zero pattern of the estimated DIF parameters. Computing 
the $L_1$-regularised estimator involves solving a non-smooth optimisation 
problem. The proposed method simultaneously identifies the latent classes and the 
DIF items. A computationally efficient Expectation-Maximisation (EM) algorithm is 
developed to solve the non-smooth optimisation problem for the regularised 
estimator. 
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ABSTRACT: Quantum information offers a new computing paradigm which may yield
further increases in computational resources beyond the limits of miniaturisation for
Moore’s law. Various quantum algorithms such as Grover’s search algorithm also offer
improvements in complexity when compared to their classical counterparts. In partic-
ular, quantum computing can be applied to the context of Boolean network analysis
in systems biology. We demonstrate a new quantum algorithm which uses a modified
Grover operator to identify attractor states in the dynamics of Boolean networks. This
procedure is based on the iterated addition of constraints for previously identified at-
tractors, thus restraining the size of the remaining state space that has to be searched.

KEYWORDS: quantum computing, quantum information, systems biology, network
theory

1 Introduction

Boolean networks (BNs) are simple mathematical dynamic models describing
gene regulatory interactions (Kauffman, 1969, Schwab et al., 2020). Network
components are represented as expressed (1) or not expressed (0). Logical
rules combining network components via the operators AND, OR, and NOT
describe the system’s interactions. Repeated evaluation of these update rules
generates complex dynamics, leading to stable states called attractors. Knowl-
edge of attractors is of interest in the biological context as these states corre-
spond to cellular phenotypes (Huang et al., 2005). The dynamic state space
of BNs grows exponentially with the number of components, limiting analy-
ses of larger systems. Motivated by the limits of traditional processors and the
search for alternative hardware, we make use of gate-based, universal quantum
computers which can perform calculations in an exponentially growing state
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space using a linearly increasing number of qubits. Thus, quantum hardware
can capture the complexity of the model’s dynamics. In our previous work
we implemented BNs on quantum computers, highlighting how quantum al-
gorithms can be used to obtain information about network dynamics (Weidner
et al., 2023a, Weidner et al., 2023b).

2 Results

Building on this, we now propose a quantum circuit performing a search through
the entire state space based on Grover’s algorithm (Grover, 1997, Liu & Ouyang,
2013), aiming to identify the entire set of attractors. Grover’s algorithm works
by iteratively amplifying the weight associated with a specified subset of states,
followed by a probabilistic readout of a single possible solution. In contrast,
we invert the roles of solution and non-solution states, resulting in a suppres-
sion of previously identified attractors. After every readout leading to the de-
tection of a new attractor, this state is then added as a constraint to the quantum
circuit in all further runs. In this manner, the search space can be restricted to
assign increased weight to states which lead to novel attractors without re-
quiring previous knowledge of the distribution or number of attractors in the
system. This also allows for the detection of small attractors which may be
difficult to find using a classical random sampling of states. Such attractors
may nevertheless be biologically interesting, e.g. in the early detection of rare
but drug-resistant phenotypes in a network modeling cancer.

We demonstrate this algorithm on a small biologically motivated Boolean net-
work with attractors of different sizes. We analyse its performance when ac-
counting for the noise present in real quantum processors and quantify the im-
provement that can be gained from error mitigation techniques. Furthermore,
we are investigating the possibility of implementing a constraint-based attrac-
tor search using quantum annealers rather than gate-based processors, due to
the increased number of qubits available on such devices.
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ABSTRACT: In longitudinal data, the observations often occur at different time
points for each subject. In such a case, ordinary clustering algorithms like K-means
clustering cannot be applied directly. Instead, one may apply a smoothing technique
to get individual continuous trajectories, followed by finding groups among the tra-
jectories using some clustering algorithm. However, this is inappropriate when each
subject’s data are observed at only a few time points. Thus, we develop a new clus-
tering algorithm for sparsely sampled longitudinal data, which can be considered a
natural extension of the K-means clustering. We show the consistency of the pro-
posed estimator under mild regularity conditions. We also evaluate its performance
through simulation studies and data applications.

KEYWORDS: clustering, longitudinal data, functional data analysis
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ABSTRACT: Multidimensional phenomena are usually characterized by nested latent
dimensions associated, in turn, with observed variables. These phenomena, for in-
stance, poverty, well-being, and sustainable development, can often differ across coun-
tries, or cities within countries, in terms of dimensions, other than in their relationships
to each other, on the one hand, and their importance in the definition of the general
concept, on the other hand. This paper discusses several parsimonious structures of
the covariance matrix reconstructing relationships among variables which can be im-
plemented in Gaussian mixture models to study complex phenomena in heterogeneous
populations.

KEYWORDS: ultrametricity, Gaussian mixture models, parsimony, hierarchical struc-
tures

1 Introduction

Nested latent dimensions associated with observed variables usually character-
ize multidimensional phenomena. The hierarchical structure underlying them
is composed of specific and higher-order dimensions; therefore, they give rise
to a hierarchy of latent concepts, whose root is represented by the general
one. These phenomena concern several fields such as economy, sustainability,
health, but also differ in their definition across countries. To reconstruct hierar-
chical relationships among variables in heterogeneous populations, Cavicchia
et al., 2022, introduced a Gaussian mixture model with a specific hierarchi-
cal structure of the component covariance matrix. The latter corresponds to
an extended ultrametric covariance matrix, whose main property is to be one-
to-one-associated with a hierarchy of latent concepts. Differently from the
mixture of factor analyzers model (McLachlan et al., 2003), where a factorial
structure in uncorrelated factors is identified, the methodology proposed by
Cavicchia et al., 2022, is able to detect correlated latent concepts, each one
associated with a group of observed variables, and to delve deeper into their
relationships.
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Notwithstanding the general formulation of an extended ultrametric co-
variance structure is useful to study hierarchies composed of their maximum
number of internal nodes, i.e., the number of the specific dimensions and their
aggregations in pairs, more parsimonious structures can be considered. In this
paper, different configurations of the extended ultrametric covariance structure
are discussed, as well as their properties and main features (Section 2). Final
considerations conclude the paper in Section 3.

2 Ultrametric Gaussian mixture models: parsimonious structures

Let xxx = (xxx1, . . . ,xxxn)′ be a random sample of size n, where xxxi (i = 1, . . . ,n) takes
value in R p. Suppose that xxxi follows a finite mixture of G Gaussian distribu-
tions, whose pdf is given by

f (xxxi;ΨΨΨ) =
G

∑
g=1

πgφ
(
xxxi;µµµg,ΣΣΣg

)
, (1)

where π1, . . . ,πG are positive weights (mixing proportions of the mixture) such
that ∑G

g=1 πg = 1, µµµg and ΣΣΣg, g = 1, . . . ,G, are the mean vectors and the com-
ponent covariance matrices of the multivariate Gaussian distributions φ(·|·).
In the Ultrametric Gaussian Mixture model, the covariance matrix of the gth
component of the mixture is parameterized as

ΣΣΣg =

⎛

⎜⎜⎝VVV g

⎡

⎢⎢⎣

Vgσ11 0 ... 0
0 Vgσ22 ... 0
... ... ... ...
0 0 ... VgσQQ

⎤

⎥⎥⎦VVV ′
g

⎞

⎟⎟⎠⊙ III p

+

⎛

⎜⎜⎝VVV g

⎡

⎢⎢⎣

Wgσ11 0 ... 0
0 Wgσ22 ... 0
... ... ... ...
0 0 ... WgσQQ

⎤

⎥⎥⎦VVV ′
g

⎞

⎟⎟⎠⊙ (111p111′p − III p)

+

⎛

⎜⎜⎝VVV g

⎡

⎢⎢⎣

0 Bgσ12 ... Bgσ1Q

Bgσ12 0 ... Bgσ2Q
... ... ... ...

Bgσ1Q Bgσ2Q ... BgσQQ

⎤

⎥⎥⎦VVV ′
g

⎞

⎟⎟⎠ . (2)

Each addend of Eq. (2) depends on the matrix VVV g, which represents the
membership matrix determining the partition of the variable space into Q < p
groups, and on one of the three parameters characterizing the variable groups.
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The first addend corresponds to the diagonal elements of ΣΣΣg, where Vgσ11,
. . . ,VgσQQ are the variances of the Q groups in VVV g; whereas, the off-diagonal
elements of ΣΣΣg are defined by Wgσqq and Bgσqh, q,h = 1, . . . ,Q,h ̸= q, in the
second and third addend of Eq. (2), respectively. The latter represent the co-
variances within and between the Q groups. Specific constraints on these pa-
rameters let the extend ultrametric covariance matrix in Eq. (2) be one-to-one
associated with a hierarchy. Specifically, an ordering exists among Vgσqq,Wgσqq
and Bgσqh so that the group variance is greater than the covariance within the
group, which in turn is not lower than the maximum covariance between the
groups.

Even if suitable in different situations to represent the hierarchical rela-
tionships among variables, the parameterization in Eq. (2) can be further con-
strained to obtain more parsimonious structures. By setting the membership
matrix VVV g to be the same across mixture components, the other three sets of
parameters can be fixed or left free to vary across them. Therefore, the lat-
ter structures pinpoint specific dimensions that are equal across the subpopu-
lations of the mixture while their aggregations, thus higher-order dimensions,
can differ across them. We can delve into an example of these hierarchical con-
figurations by considering well-being. OECD identifies eleven key dimensions
for measuring it throughout the countries*. Nonetheless, despite sharing the
same specific dimensions, the characterization of this complex phenomenon
can vary across countries. For instance, the education level is more associated
with the possibility of having a better job in less developed economies and
more related to a higher civic engagement in more developed economies.

In both cases in which the specific dimensions are equal or not across com-
ponents, they can be aggregated altogether at the same level, i.e., a unique
value occurs in the matrix of the covariances between groups. This structure
gives rise to a second-order hierarchy, studied by Cavicchia & Vichi, 2022, in
the factor analysis framework. An interesting case that arises from this con-
figuration corresponds to a formative model (Bollen, 2001), where the unique
value Bσ – depending or not on g – equals zero. Indeed, in this hierarchical
structure, the specific dimensions result to be uncorrelated and, thus, formed
the general concept as unique and not interchangeable part of it. Several exam-
ples of formative concepts exist in the literature, such as human development,
which is measured by three specific dimensions, i.e., long and healthy life,
education, and decent standards of living, usually uncorrelated to each other.

*https://www.oecd.org/wise/measuring-well-being-and-progress.htm
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3 Conclusions

When studying multidimensional phenomena, the hierarchical structures of la-
tent dimensions underlying them have to be analyzed to build an index for
their measurement. To this aim, Cavicchia et al., 2022 proposed an ultrametric
Gaussian mixture model which is able to delve into hierarchical relationships
among latent dimensions, on the one hand, and to study different character-
ization of concepts in heterogeneous populations, on the other hand. In this
paper, several parsimonious structures of the component covariance matrices
are discussed together with the analysis of their corresponding hierarchies.
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ABSTRACT: Scanner data arising from retail transactions have replaced survey of
food price observations for the consumer price index (CPI) for more than a decade.
The same data source can provide the expenditure weights needed for the CPI as well,
when combined with population data using secure linkage and processing techniques
that protect confidentiality. This would alleviate the most burdensome part of diary
collection for the Consumer Expenditure Survey that collects expenditure data from
households. Due to the sheer amount of transactions, automatic classification of the
consumption subclasses of the goods requires natural language processing techniques,
as long as there does not exist a catalogue that covers all the goods. Statistical theories
pertaining to these big-data expenditure weights and classification are discussed.

KEYWORDS: audit sampling inference, evaluation coverage, entity resolution, maxi-
mum entropy classification, entity forest.

1 Big-data proxy expenditure weights

In some countries, scanner data arising from retail transactions have replaced
survey of food price observations for the consumer price index (CPI) for more
than a decade. The data are typically available on a weekly basis, in the form
of unit value (average) price for each consumption goods or item. Scanner data
constitute a promising source of price data for CPI, which is being expanded to
other consumption subclasses such as clothes, electronics. For the price index
methodology based on scanner data, we refer to the website of Ottawa Group .

Provided one can connect the transaction items of different consumer sub-
populations, it is possible to calculate proxy CPI expenditure weights for any
specific subpopulation. Unlike the survey-based weights, these proxy weights
can be considered to have virtually zero sampling variance for practical pur-
poses because of the sheer amount of data that can be made available. But they
are generally biased due to a number of errors that are unavoidable in reality.
In particular, these include coverage errors caused by the discrepancy between
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the available transactions and the entire consumption of the population, and
selection errors from the available transactions because, for various technical
reasons, one is not able to code and classify all the items.

In such a situation, where bias completely dominates variance, modelling
the intrinsic variability of the proxy weights would be fruitless, as long as it
cannot capture the bias. Additional observations of expenditure are necessary
to investigate the extent to which the proxy weights may be biased. Zhang
(2021) propose and develop audit sampling inference for big-data statistics,
which consists of the following elements:

I. clarify the validity condition for unbiased big-data statistics,
II. derive tests for the unbiasedness of big-data statistics,
III. measure the accuracy of the big-data statistics.

The theory of audit sampling inference is applied to the Norwegian data in
following setup. First, fully anonymised food expenditure data are obtained for
a single weekday in September of 2016, based on extractions provided by the
largest debit card payment service and some of the largest supermarket chains.
The proxy expenditure weights are calculated from 0.8 million transactions,
broken down to four groups according to the age of the cardholder.

Next, take the Consumer Expenditure Survey 2012 as the audit sample,
where the survey-based expenditure weights are treated as unbiased estimates
of the true CPI food weights for 2012. Setting aside the coverage and selection
errors of the available transaction data with respect to all household purchases,
the proxy CPI weights do not refer to exactly the same subpopulations as those
identified in the survey, because the transaction data refer to a different time
point and the proxy weights are broken down by the age of the cardholder
instead of the age of the household head. In other words, these proxy weights
are necessarily biased for the true CPI weights in 2012.

Applying the tests developed for this setup, one is unable to reject the
null hypotheses that the proxy-weights CPI for the different subpopulations
are unbiased, despite the high power of the tests. However, since one can be
certain that the proxy weights are not exactly equal to the true weights, it is
sensible to treat these non-rejection results as indications for the usefulness of
the resulting big-data CPI, and accuracy measures are still necessary.

Mean squared error (MSE) is a common choice of accuracy measure where
bias is known to exist. However, MSE estimation can easily produce negative
(hence unusable) results, where the audit sampling variance is large compared
to the bias of the big-data statistic. It is unattractive to simply increase the
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audit sample size in such situations, which means audit sampling would be
more costly in a relatively favourable setting for adopting big-data statistics.

Zhang (2021) proposes and develops evaluation coverage as a novel ac-
curacy measure for any big-data statistic, which is generally applicable based
on audit sampling and overcomes the problem of limited audit sample size.
Whereas the estimation of MSE runs into troubles in the said application, the
evaluation coverage provides meaningful results. Indeed, to reach the same
evaluation coverage of the proxy-weights CPI, the survey sample size would
need to be increased approximately by a factor of 80 in some cases, which is
unrealistic in practice.

In short, by the proposed approach of audit sampling inference, one can
conclude from the study that proxy CPI weights derived from the transaction
data can replace the relevant diary component that is the most burdensome part
of the traditional expenditure survey.

2 Classification based on text

The consumption items are classified into subclasses called COICOP groups.
Automatic classification of COICOP groups of the large amount of transaction
items requires natural language processing techniques, as long as there does
not exist a COICOP-catalogue that covers all the items.

Denote by i= 1, ...,N the items to be classified. Let U = {1, ...,N}. Denote
by y = 1, ...,K the groups to which items are classified. Let Γ = {1, ...,K}.
Denote by x any term that can be used in item description, e.g. jasminris,
toalettpapir, etc. Denote by xxx the collection of terms in item description, possi-
bly in vector-representation , e.g. xxx = {coop, jasminris}= (1,1,0,0, ...,0)1×p.
Denote by Ω the corpus of item description, i.e. Ω = {xxxi : i ∈U}.

For each i ∈ U , let yi be its group classification. Group classification can
be viewed as an entity resolution problem, where Γ are the (known) entities
and U the records. The records Uy, Uy = {i ∈ U : yi = y}, are considered to
be matched (to each other) via co-reference to the entity y. The resolution we
seek is the partition U =

⋃
y∈ΓUy, denoted by C= {Uy : y ∈ Γ}.

One can distinguish generally the discriminative or generative machine
learning approach to classification or entity resolution problems. By the dis-
criminative approach, classification of yi for any i ∈U is based on

f (y|xxx;Ω) = Pr(yi = y | xxxi = xxx;Ω)

where the different terms in an item description xxx are used as distinct features
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for f (y|xxx;Ω). Let fU(y|xxx;Ω) be the model function given the corpus Ω and
the true resolution {Uy : y ∈ Γ}. As long as there exists any term x, e.g. x =
ekstra, which appears in multiple item descriptions not all belonging to the
same group, classification of any xxxi that contains this x-term may be incorrect
by the discriminative classifier

yi = argmax
y∈Γ

fU(y|xxxi;Ω)

By the generative approach, one would focus on the model function

f (xxx|y;Ω) = Pr(xxxi = xxx | yi = y;Ω)

Let fU(xxx|y;Ω) be the model function given the corpus Ω and the true resolution
{Uy : y∈Γ}. The corpus Ω is free of entity-duplication provided, for any xxx∈Ω,

∑
y∈Γ

I
(

f (xxx|y;Ω)> 0
)
≡ 1

This admissibility condition is in fact necessary for any well-defined mapping
from the item descriptions Ω to the groups Γ. Notice that it allows for multiple
items with the same xxx as long as they all belong to the same group. Given any
admissible corpus Ω, classification of any i ∈U based on xxxi would always be
correct by the generative classifier

yi = argmax
y∈Γ

fU(xxxi|y;Ω)

even if there are terms belonging to item descriptions in different groups.
Thus, perfect classification is conceptually possible and easily achievable

only by corpus engineering under the generative approach. We develop a gen-
erative approach to item classification based on text descriptions. Entity res-
olution and maximum entropy classification are adopted as the formal frame-
work. In situations where only a subset of all the items have known classifica-
tions, we develop supervised learning of an entity forest model and associated
classification method (based on item descriptions) for the rest of the items.

References

Zhang, L.-C. (2021). Proxy expenditure weights for Consumer Price Index:
Audit sampling inference for big-data statistics. Journal of the Royal
Statistical Society, Series A, 184, 571-588.





Contributed Papers





325

PROPENSITY TOWARDS MASTER’S DEGREE:
CHOICES OF NORTHERN STUDENTS AFTER BAS?

Alfonzetti Giuseppe 1, Grassetti Luca1 and Rizzi Laura1

1 Department of Economics and Statistics, University of Udine, (e-mail:
giuseppe.alfonzetti@uniud.it, luca.grassetti@uniud.it,
laura.rizzi@uniud.it)

ABSTRACT: The study aims to explore northern students’ choices after Bachelor’s
degree, focusing on which individual and contextual factors affect the likelihood to
continue studying at MAs. The study is population-based, and the used dataset is
extracted from the Italian Ministry of University’s administrative databases. Students’
characteristics are used to study the probability of enrolling in a Master’s degree by
generalized linear mixed models. Model estimation results can be used to predict the
probability of continuing the studies for students at first enrolment and update them
during their studies. From the university’s point of view, this can represent an essential
tool for monitoring the students’ careers.

KEYWORDS: Enrollment at MAs, GLMM models, Northern students’ mobility‘, Spa-
tial and contextual effects.

1 Introduction and aims

In the last decades, the literature on educational mobility at national (Barriolu-
engo & Flisi, 2017) and international (Van Bouwel & Veugelers, 2013) levels
has grown in importance. In the Italian context, much interest has been set on
the South–to–North flows at first university enrollment (see, for instance, At-
tanasio et al., 2020). Furthermore, the multi-cycle organization, based on a 3-
years first-cycle degree (Bachelor’s degree) and a 2-years second-cycle degree
(Master’s degree), offers the opportunity to examine further aspects of the stu-
dents’ training paths and study the transition between consecutive levels of the
academic studies (Mollica & Petrella, 2017). This study aims to disentangle
individual and contextual factors’ role in the northern Italian students’ behavior
after the first level qualification. Besides the classical predictors of academic
outcomes, particular attention is devoted to aspects of students’ paths, trying to
answer the following questions: Do the context of origin and the university of
bachelor degree affect the choice of transition? Do stayers and movers at first-
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level careers show a different propensity to enroll on a master’s programme?
Which is the trend of Northern students’ enrollment in Master programmes?

The study is structured as follows. Section 2 is devoted to the data and
methods description. Model results and discussion are reported in Section 3.

2 Data and Methods

The study uses a cohort-based dataset collected using the Italian Ministry of
University’s administrative databases (Mobysu.it, 2016, update 2022). The
analysis regards the cohorts of students who reached the Bachelor’s degree
in the academic years 2012/13 - 2016/17, which allow observing the Bache-
lor (BA) to Master (MS) transition. Therefore, we focus on BA students who
attended a high school in northern Italian regions, and we exclude students en-
rolled in medicine, veterinary, or other 5-year courses. Furthermore, students
enrolled in health professions and engineering courses are excluded from the
analysis because of their extremely low and high enrolling rates, respectively.

The first step in data analysis is based on simple descriptive statistics.
The selected database considers students enrolled in 80 universities during the
Bachelor’s course (mostly in northern universities ∼ 98.2%). The number of
Northern students enrolled at MS degrees increased by 76.4% in the period,
with great heterogeneity across high school regions (from 45% of Trentino
Alto Adige (TAA) to 100% of Liguria). Considering the Northern regions of
BA, the relative increase in MS students ranges from 58% of TAA to 111% of
Veneto. However, this increase in MS students is mainly due to the growth of
students entering the university’s first-level programmes. As a result, the tran-
sition rates from BA to MS decreased in the period. Figure 1 details the tran-
sition rates for students who obtained the BA degree in 2016/17, distinguished
by individual and contextual factors. Flows between categories visually high-
light the rates of MS enrolling students belonging to the two specific categories
of adjacent factors. At the same time, the associated white background labels
refer to the enrolling rates conditioned on the flow. Blue background labels, in-
stead, report, from top to bottom row: the category name, its proportion to the
whole population and the marginal enrolling rate in that specific category. For
example, it highlights the effect of the interaction between the field of study
and degree mark, showing that scientific and economic-related graduates dis-
play higher enrolling rates, 83.7% and 59.7%, respectively, compared to the
average in the mark range (100,109], 66.4%. Briefly, the highest rates of tran-
sition in the 16/17 cohort are registered for movers males (62.7%), with BA
degree in fields ”math-bio” or ”other” (75.1% and 77.3%, respectively), with
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Too in-depth study this phenomenon, we adopted a model-based approach.
In particular, we compare several possible GLMM configurations with ran-
dom intercept components on a 20-fold cross-validation run on the training
data (70% of the available observations). The final model configuration is
chosen by monitoring its goodness of fit, via AIC and BIC and its predictive
performance, via AUUC, on the 20 folds. The models are fitted in R with the
glmmTMB package (Brooks et al., 2017), which allows for the integration of
random fffects through Laplace approximation.

3 Model results and comments

The chosen model exhibits a cross-classified random intercept, with random
components accounting for the high-school municipality and the BA univer-
sity. Finally, the model is refitted on the whole training partition, obtaining a
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predictive AUC on the test sample of the 73%, in line with the cross-validation
results. Detailed model estimates are omitted for space reasons.

From an interpretation point of view, the model estimation represents a
tool for monitoring the students’ careers and predicting their transition behav-
ior. The type of high school attended and the BA study field, as well as their
interactions with the corresponding degree marks, emerge as very informative
for the MS enrollment choice. Students from scientific fields and students with
classic and scientific high school backgrounds are the most likely to further
their university education. Furthermore, many individual-specific character-
istics play a crucial role in explaining the probability of enrollment, among
which the distance from the high-school municipality, as well as the age at
graduation and the numbers of years enrolled, play a detrimental role. Finally,
the model highlights a significant gender gap, with male students more likely to
enrol on an MS. The temporal dimension of the phenomenon enters the model
with a set of binary predictors encoding the academic years of reference. The
estimates show a sharp drop in the enrollment probability from 2012/2013 to
2014/2015, followed by a softer decrease till 2016/2017.
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ABSTRACT: The university students’ behaviour represents a relevant field of study
from the management point of view. Given the availability of large administrative data
on students’ careers, the chance to discover students’ profiles in terms of behavioural
patterns could be interesting. However, the identification of students’ clusters that
are informative, feasible and robust at the same time could be complex. The present
work aims to define a feasible student clusterisation, adopting an empirical algorithm
to treat mixed data and large sample sizes and borrow the syncytial clustering idea
developed in the machine learning framework. The proposal is a generalisation of the
original algorithm to mixed data cases. Finally, the importance of finding a prototype
of students’ behaviours is discussed.

KEYWORDS: Two-stage clustering, Hierarchical clustering, Partitioning clustering,
Student profiling, Students careers

1 Introduction and aims

A relevant task in education is analysing students’ behaviour during their ca-
reers. In particular, finding some structured patterns helps defining actions
to optimise the supply and organisation of second-level university (Masters)
courses and, more in general, of the third-level educational system. Analysing
the identified patterns makes it possible to point out both opportunities and
shortages in the university education provision.

The availability of individual-level administrative data and their integration
with contextual information on the university students (such as the secondary
school track) can be considered fundamental for the development of a detailed
data mining process able to extract the relevant signals from the humongous set
of available data. In particular, the adoption of feasible and robust clustering
behavioural has a crucial role in the detection of students’ prototype character-
istics that can be relevant in providing better services and management.
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The dataset considered in the present study comes from a population database
regarding Italian university students. We decide to focus on the subset of stu-
dents from the North of Italy. Even in this restricted framework, the size of
the dataset is very large (close to 400,000). Clustering under these settings is
not straightforward. The classical hierarchical clustering is unfeasible given
the size of the distance matrix, and the partitive solutions (k-means and other
machine learning algorithms) are typically difficult to manage. For instance,
determining the optimal number of groups or developing a diagnostic for the
obtained solution is complex and time-consuming.

In the present work, we propose a solution which inherits the two-stage
clustering idea of alternating a hierarchical and a partitive algorithm to reach
a more interpretable solution. The typical two-stage clustering algorithm in-
volves a hierarchical clustering first and a partitive approach then, which re-
sults unfeasible in large dataset settings. Our approach, instead, connects to the
syncytial algorithms outlined in Peterson et al. (2018) and Almodóvar-Rivera
& Maitra (2020), where the output of a partitive algorithm is used as input for
a second agglomerative step.

The main contribution of the present work is the definition of a practical
tool for students’ prototype recognition based on a syncytial clustering algo-
rithm accommodating mixed data types. The proposal provides enhanced in-
terpretability compared with the classical unsupervised solutions usually adopted
in large dataset frameworks.

The structure of the paper is as follows. First, Section 2 details the pro-
posed methodology and presents the data. Then, Section 3 summarizes the
results of the empirical analysis.

2 Data and Methods

The characteristics of the Northern Italian students are collected from the Ital-
ian Ministry of University’s administrative databases (Mobysu.it, 2016, update
2022). In this preliminary analysis, variables considered in the clustering pro-
cedures are only some available measures of students’ career performance. in
particular, the analysis involves a set of dummy variables identifying: Italian
students, private secondary schools, and public universities. In addition, fac-
tors for the kind of secondary school attended and the gender of students are
also included. Finally, some quantitative variables are introduced, including
students’ age at bachelor’s degree, bachelor’s course duration, diploma and
bachelor’s degree marks, years between diploma and bachelor’s degree enrol-
ment, and the distance between the first-level university and secondary school
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municipalities.
As anticipated, the proposed methodology can be framed as a syncytial

clustering algorithm (Peterson et al., 2018; Almodóvar-Rivera & Maitra, 2020).
Furthermore, due to the mixed nature of our dataset, where many dummy vari-
ables and factors are observed along with some numerical measures, the two
steps accommodate algorithms suitable to deal with mixed data. Specifically,
the first step implements a k-prototypes clustering (Huang, 1998; Szepannek,
2018), while the second one is a hierarchical clustering procedure based on
Gower’s distance (Gower, 1971; Maechler et al., 2022). It is worth stressing
that the proposed method enjoys easy identification of the optimal clustering
solution, along with enhanced interpretability and a robust cluster selection.

3 The empirical analysis

In this section, we analyse a specific clustering solution focusing on students’
prototyping and interpret the obtained results.

The optimal number of clusters selected by the procedure is four, as the
dendrogram in Figure 1 suggests. Figure 1 also shows the flow of the stu-
dents through their career characteristics represented for the different clusters.
First, Gender is used to describe the population, and then the student patterns
are observed over the schooling period. The choice of the kind of school is
the first step (for the sake of readability, we reduced the factor to a dummy
variable identifying the Liceo secondary school). A fundamental variable af-
fecting the students’ career is the diploma mark which is here classified into
three levels (≤ 80, 81− 90, and 91+). The choice of the University is also
linked to the opportunity to move from home. The distance variable is a cate-
gorized version of the Euclidean distance between the first-level university and
secondary school municipalities (0, 1−50, 51−100, 101+ km). The Degree
Age is a categorical variable collecting the regular, young, and Late students
defined based on their age at bachelor’s degree (≤ 22, 23− 25, and 26+). In
the plot, the final collected aspect before the master’s degree choice is defined
here by Degree Mark, a factor presenting low, mid-low, mid-high, and high
levels (≤ 90, 91−100, 101−110, summacumlaude). All these characteristics
flow into the choice of continuing the career or dropping from the university
system.

We finally link the students’ prototypes to the dropout phenomenon as an
example of university outcomes. However, while the clustering approach al-
lows to point out some prototypes of students on the basis of their high-school
and first-level university tracks, the identified groups are not connected with
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ALMODÓVAR-RIVERA, I.A., & MAITRA, R. 2020.
parametric overlap-based syncytial clustering. Th
Learning rcch, 21(1), 4808–4861.

GOWER, J.C. 1971. A general ffificient of similarity
erties. Biometrics, 857–871.

HUANG, Z. 1998. Extensions to the k-means algorith
data sets with categorical values. Data mining and
2(3), 283–304.

MAECHLER, M., et al. 2022. cluster: Cluster Analysis
R package version 2.1.4.

MOBYSU.IT, DATTABASE. 2016. Database Mobysu.it
in Italia. In Protocollo di ricerca MIUR-Università
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ABSTRACT: In the last two decades, text modeling techniques have been used for var-
ious applications, including the analysis of topics in different text documents, where
the aim is to provide a document representation in terms of topic distribution. This
work aims to show some results on a generalization of the popular latent Dirichlet
allocation model, with a particular focus on the clustering of text documents.

KEYWORDS: Dirichlet, latent variable, MCMC, mixture model, textual data.

1 Introduction

Let us consider a collection C of D text documents, commonly referred to as a
“corpus”. The d-th document can be thought of as a sequence (wd,1, . . . ,wd,Nd )

ᵀ

of Nd words (i.e., wd,n represents the n-th word in the d-th document, d =
1, . . . ,D and n = 1, . . . ,Nd). The set V of the V unique words appearing in the
corpus represents a “vocabulary”.

Topic modeling techniques assume that each word in a document is gen-
erated according to one among T possible topics. As a consequence, the d-th
document can be represented through a vector θθθd = (θd,1, . . . ,θd,T )ᵀ, where
θd,t represents the proportion of words in document d generated from topic t.
Clearly, θθθd belongs to the T -part simplex S T = {θθθ : θt > 0,∑T

t=1 θt = 1}. Sim-
ilarly, each topic is represented as a discrete probability distribution φφφt over
the vocabulary V , t = 1, . . . ,T , thus φφφt ∈ SV . The most popular topic model
is the latent Dirichlet allocation (LDA), introduced by Blei et al., 2003, which
supposes both the vectors θθθd and φt following a Dirichlet distribution on S T

and SV , respectively. Thus,

θθθd ∼ Dir(ααα), ααα ∈ RT
+ and φφφt ∼ Dir(βββ), βββ ∈ RV

+.

Despite its popularity, the LDA suffers from the poor parameterization that the
Dirichlet deserves for its covariance matrix. Then, the development of a more
flexible technique seems to be a relevant issue.
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2 The flexible LDA

In this section, we introduce a generalization of the LDA, namely the flexible
LDA (FLDA). This model arises by assuming a flexible Dirichlet distribution
(FD, Migliorati et al., 2017) for each θθθd . The FD is a (structured) finite mixture
model with Dirichlet components:

FD(θθθ;ααα,τ,p) =
T

∑
t=1

ptDir(θθθ;ααα+ τ · et),

where p ∈ S T , τ > 0, and et is the null vector with the t-th element equal to 1.
The additional parameters introduced by the mixture structure of the FD allow
for a more flexible modelization of the covariance matrix, thus overcoming
some limitations of the Dirichlet. It is noteworthy to mention that the FD
includes the Dirichlet distribution as a special case if τ = 1 and pt = αt/α+

for t = 1, . . . ,T , hence the FLDA model includes the LDA. The FD possesses
several statistical properties, among which is the conjugacy to the multinomial
scheme. Thus, if θθθd ∼ FD(ααα,τ,p), then θθθd given the corpus (i.e., the observed
data) follows an FD distribution with updated parameters ααα∗,τ∗, and p∗.

To obtain estimates for the FLDA parameters {θθθ1, . . . ,θθθD} and {φφφ1, . . . ,φφφT},
we implement a collapsed Gibbs sampling (CGS), extending the approach pro-
posed by Griffiths & Steyvers, 2004. The main difference with respect to a
standard Gibbs sampling is that full conditionals are computed by marginaliz-
ing some parameters out. The estimates of the dropped parameters are com-
puted by means of the conjugacy properties. To implement a CGS, we intro-
duce a set of latent (i.e., unobservable) random variables Zd,n representing the
topic label of the n-th word in the d-th document, n = 1, . . . ,Nd , d = 1, . . . ,D.

It is possible to show that the full conditionals, namely the probability
that {Zd,n = t} (i.e., the word is assigned to topic t) given all the other topic
assignments z−(d,n), take the following form

p(Zd,n = t|z−(d,n),C ,ααα,τ,p,βββ) ∝

∝

(
αt + c−t,d,·

)(
βvd,n + c−t,·,wd,n

)

(
β++ c−t,·,·

) ·
{

T

∑
h=1

p∗d,h + p∗d,t

(
τt

αt + c−t,d,·

)}
,

t = 1, . . . ,T , where p∗d,t = pt
(αt + τ)[ct,d,·]

(αt)[ct,d,·]
, x[n] = x(x+ 1) · · · · · (x+ n− 1) de-

notes the rising factorial function, and wd,n ∈ V indicates which term of the
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vocabulary is associated with the n-th word in document d. Additionally, we
define the quantities ct,d,·, ct,·,w, and ct,d,· as summation over the proper index
of the counts ct,d,v =∑Nd

n=1 I(zd,n = t, wd,n = v), the latter representing the num-
ber of times that word v is assigned to topic t in document d. Having the full
conditionals, the CGS algorithm can be summarized by the following steps:

1. Initialize the vector z (randomly) and compute the counts c(0)t,d,v;
2. For b = 1, . . . ,B:

• For each word in the corpus:
– sample a new topic z(b)d,n for wd,n from p(z);

– update the counts c(b)t,d,v.

• Use z(b) to compute the estimates θ̂θθ(b)
d and φ̂φφ(b)

t .

By having a sample of size B for the topic labels, namely z(b), b = 1, . . . ,B, and
relying on the conjugacy properties, we can estimate θθθd and φφφt as the mean of
an FD and Dirichlet distributions with updated parameters, that is

θ̂θθ(b)
d =

ααα+ c(b)d + τp∗
d
(b)/p(b)+

α++ τ+Nd
and φ̂φφ(b)

t =
βββ+ c(b)t

β++ c(b)t,·,·
,

where c(b)d = (c(b)1,d,·, . . . ,c
(b)
T,d,·)

ᵀ and c(b)t = (c(b)t,·,1, . . . ,c
(b)
t,·,V )

ᵀ.

3 Application: The Great Library Heist

During the night, a vandal broke into their professor’s study and tore three
books into single chapters. The single chapters are not labeled, so the profes-
sor is not able to cluster them so to restore the original books. In the following,
we consider the D = 166 chapters as documents forming the corpus. We will
consider T = 3 latent topics, each of them hopefully representing one of the de-
stroyed books. Words in the corpus C compose a vocabulary V of V = 16531
unique terms. We run both the LDA and the FLDA models for B = 5000 it-
erations. Figure 1 displays the topic proportions θθθd for all the documents, by
conditioning on the true topic (i.e., the original book). We can note that both
the LDA and FLDA models represent chapters from “Great Expectations” as
mainly composed of terms arising from topic 1. The FLDA, thanks to the flex-
ible covariance matrix of the FD, improves the LDA performance by providing
more concentrated θθθd’s towards 0 or 1 than the LDA. Similar conclusions hold
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true for chapters from “20000 Leagues Under the Sea” and “Pride and Preju-
dice”, being characterized by high proportions of words from topics 2 and 3,
respectively. Toopics generated by the FLDA are represented by illustrating the
20 most probable words (Figure 2).
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ABSTRACT: Machine Learning (ML) models are often used to support classification
decision-making, such as in peer-to-peer lending. However, they usually lack inter-
pretable explanations. While Shapley values and the computationally efficient variant
Kernel SHAP may be employed for this aim, the latter makes the assumption that the
features are independent. We explain classifiers through a Kernel SHAP method able
to handle dependent features in the context of credit risk management for peer-to-peer
lending. We demonstrate the effectiveness of our method by considering linear and
non-linear models with varying degrees of feature dependence, showing that our ap-
proach yields credible estimates of true Shapley values across model and dependence
specifications.

KEYWORDS: feature dependence; Shapley values; machine learning; explainability.

1 Introduction

Obermeyer & Emanuel, 2016 pointed out that ML model interpretability en-
hances medical, healthcare, credit scoring, and fraud detection. Explaining
complex ML model predictions is a challenging task, and the model’s ex-
planation is crucial for both reliability of the estimates and for fairness and
compliance with respect to General Data Protection Regulation compliance.
Peer-to-peer lending requires creditworthiness, namely transparent and trust-
worthy explanations to build trust and help lenders and borrowers make well-
informed choices. Credit risk analysis determines peer-to-peer lending rates
and creditworthiness, and lenders may distrust complicated ML model predic-
tions. Explainable Artificial Intelligence (XAI) improves classification accu-
racy, model transparency and interpretability via the concept of game-theoretic
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Shapley values. Recent model-agnostic explanation methods simplify under-
standing of how each predictor affects the prediction; in particular, Aas et al.,
2021 expand Kernel SHAP to address interdependent characteristics. We ex-
ploit such formulation of Kernel SHAP to build predictive classification ML
models and relative model explanations for interpretable peer-to-peer credit
risk management. We test our proposal on three predictive ML models, i.e. lo-
gistic regression, GAMs, XGBoost, and four structures for modelling feature
dependence, i.e. the independent case, Gaussian, empirical distribution and
copula. This study reveals that linear and non-linear models with variable fea-
ture dependencies give consistent and reliable Shapley value estimates. This
enhances the understanding of the drivers of peer-to-peer lending credit risk
and outlines best practices for its management via machine learning classifica-
tion techniques.

2 Kernel SHAP for dependent features

Kernel SHAP computes feature importance using weighted linear regression
and local linear regression coefficients. In classical machine learning, a pre-
dictive model, f (x), is trained using a training set of size ntrain comprised
of sets y

{
yi,xi}

i=1,...,ntrain
where j = 1, . . . ,ntrain. This model attempts to

closely approximate the response value y. To explain the prediction f (x∗) for
a particular feature vector x = x∗, the Kernel SHAP technique only uses the
independence assumption p(xS̄ | xS ) = p(xS̄) - see Aas et al., 2021.

We examine how the three different ways of accounting for dependence
structures in the features increase ML credit risk model accuracy and feature
explainability compared to independence.

2.1 Multivariate Gaussian distribution

Given that the feature vector x is obtained from a multivariate Gaussian dis-
tribution with mean vector µ and covariance matrix Σ, then the conditional
distribution p

(
xS | xS = x∗S

)
is also multivariate Gaussian. By expressing p(x)

in terms of p(x) = p(xS ,xS ) = NM(µ,Σ) with µ = (µS ,µS )
⊤ and

Σ =

[
ΣSS ΣSS
ΣSS ΣS̄S̄

]

gives p
(

xS |S = x∗S
)
= N|S

(
µS |S ,ΣS |S

)
, with

µS̄|S = µS̄ +ΣS̄SΣ−1
SS (x∗S −µS )
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and
ΣS̄|S = ΣS̄S̄ −ΣS̄SΣ−1

SS ΣSS̄

2.2 Gaussian Copula

A d-dimensional copula is a multivariate distribution, C, characterized by uni-
formly distributed marginal probabilities U(0,1) over the unit interval of [0,1].
Sklar’s theorem states that for each multivariate distribution F with univariate
distributions F1,F2, . . . ,Fd can be written as

F (x1, . . . ,xd) =C (F1 (x1) ,F2 (x2) , . . . ,Fd (xd)) ,

for some appropriate d-dimensional copula C. In fact, the copula from (12)
has the expression

C (u1, . . . ,ud) = F
(
F−1

1 (u1) ,F−1
2 (u2) , . . . ,F−1

d (ud)
)

where the F−1
j s are the inverse distribution functions of the marginals. As-

suming a Gaussian copula, the following methodology can be employed to
generate samples from p

(
xS | xS = x∗S

)
.

2.3 Empirical conditional distribution

We propose a non-parametric method if x’s dependence structure and marginal
distributions depart from the Gaussian. The kernel estimator, a classical non-
parametric density estimation method, has been modified and improved over
the decades. The kernel estimator is impeded by the curse of dimensional-
ity, which rapidly restricts its applicability in multivariate problems. Addition-
ally, the non-parametric estimation of conditional densities is limited to a small
number of techniques, particularly when either xS or xS is not one-dimensional.
Ultimately, most kernel estimation methods generate a non-parametric density
estimate, however, samples from the estimated distribution must be produced.
Consequently, we have formulated an empirical conditional method to approx-
imately sample from p

(
xS | x∗S

)
.

3 Empirical Findings

We compare accuracy and prediction explanations from different ML mod-
els and feature dependence settings on four predictive models using the sug-
gested technique. Logistic regression and three more complex predictive mod-
els—GAMs, RF, and XGBoost—are chosen. Lending Club (LC) has 2260701
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Figure 1. Distribution of Shapley values from random subsampling for each variable,
model and feature dependence structure.

observations on individual borrowers and their requested loans from 2007 to
the fourth quarter of 2018. In this study, we preprocess data and keep 14 vari-
ables to analyze the impact of dependencies on the explanations produced by
the different ML models. We perform test data random sub-sampling, which
provides Shapley values for each of the n = 100 iterations. Results are con-
tained in Figure 1. The figure shows that Shapley value estimates are very
consistent across model specifications, and that loan amount is the variable
fostering the discriminatory power of all the classification models employed.
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ABSTRACT: A competing risk model in discrete time is employed to analyze the
outcomes of students’ academic careers, which are degree attainment, drop out or
transfer to another course. As covariates, besides using the variables available from
the administrative database, we consider also the performance of the students in terms
of ability and speed, which are predicted from an IRT model applied to the grades
obtained in the exams. An application shows that these variables are good predictors
of the outcomes.

KEYWORDS: academic performance, latent variables, survival analysis.

1 Introduction

Competing risks models in discrete time (Tutz & Schmid, 2016) are particu-
larly suitable for the analysis of the students’ careers at university since they
consider all the possible events that can occur in time (see Scott & Kennedy,
2005, Clerici et al. , 2015). Such events are degree attainment, drop out or
transfer to another course. The novelty of our proposal is given by the pre-
dictors included in the model. In fact, we use an Item Response Theory (IRT)
model for the grades obtained by the university students and the time needed to
pass the exams that accounts for two sources of censoring: dropout and lack of
grades for non-passed exams. Using this model we predict two latent variables
for each student, which can be interpreted as ability and speed. More details
on this model can be found in Battauz (2023). They are then used as predictors
in the competing risk model together with other observed covariates.

2 Models and Methods

To extend the analysis of time-to-event data from the case of one possible
event, as usually done in survival analysis, to the case of multiple events, it is
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necessary to define a hazard function for each target event

λr(t|x) = P(T = t,R = r|T ≥ t,x) , (1)

where R ∈ 1, . . . ,m denotes the event, T ∈ 1, . . . , tmax the time, and x a set of
covariates. It is possible to show that the survival function is given by

S(t|x) = P(T ≥ t|x) =
t

∏
i=1

(1−λ(i|x)) (2)

and the event probability results

P(T = t,R = r|x) = λr(t|x)S(t −1|x). (3)

In discrete time, the hazard function is frequently modelled using the multino-
mial model

λr(t|x) =
exp(β0tr +x⊤βr)

1+∑m
i=1 exp(β0ti +x⊤βi)

. (4)

Once the parameters have been estimated, it is possible to compute the event
probabilities for a vector of covariate values x by means of Equations (2) and
(3). The estimation was performed by maximum likelihood.

3 Application

The model was applied to the 2017 cohort of students enrolled in Business
or Economics at the University of Udine, composed of 353 people at base-
line. These two bachelor’s degrees share many courses, especially in the first
and second year, thus permitting us to fit the IRT model with censoring to the
grades obtained by these students together. From the IRT model we predict
two latent variables for each student: the ability (θ) and the speed (τ). The
predicted values are then standardized and used as covariates in the compet-
ing risk model together with other variables available from the administrative
database, which are age at enrolment, grade obtained from high school, type
of high school, gender and residence. Table 1 reports the estimates of the coef-
ficients of the variables selected on the basis of statistical significance. Hence,
the only variable still significant when θ and τ are included in the model is
age, with younger students having higher probabilities of attaining the degree
and lower probabilities of dropping out. Both ability and speed have a positive
effect on the probability of attaining the degree and also a positive joint ef-
fect. Figure 1 shows the cumulative predicted probabilities for different values



345

of θ and τ. The age was fixed at 19, the most common value. It is apparent
the important effect that these variables have on the outcome. Students with
moderately high values of both ability and speed present a high probability of
attaining the degree. Such probability results definitely lower for students with
low values of ability and moderately high speed, while having low values of
speed and moderately high ability affects the time of degree attainment with
a less severe impact on the probability of obtaining this outcome. Finally, the
case of low levels on both the latent variables determines very low probabilities
of attaining the degree.

Table 1. Estimates of the coefficients of the model (coef.) and their standard errors
(s.e.).

Degree Drop Out Transfer
Variable coef. s.e. coef. s.e. coef. s.e.
time 1 -26.13 0.00 -1.79 0.21 -1.28 0.20
time 2 -9.93 1.45 -3.91 0.38 -3.48 0.41
time 3 -0.35 0.24 -3.37 0.39 -4.74 1.02
time 4 0.71 0.34 -2.94 0.43 -13.01 86.69
time 5 -0.80 0.74 -1.30 0.42 -13.00 133.39
θ 1.87 0.32 -1.77 0.24 -0.52 0.23
τ 1.84 0.27 -0.63 0.19 -0.27 0.23
age at enrollment - 19 -0.20 0.12 0.06 0.03 -0.00 0.04
θ× τ 0.55 0.39 -0.62 0.20 -0.15 0.22

4 Conclusion and ongoing work

This paper shows that students’ ability and speed, measured through the grades
obtained in the exams, play an important role in their career. These two vari-
ables are predicted using an IRT model with censoring, and hence the predicted
values can be considered as measures with error of the latent variables. Since
error-in-variables introduces bias in parameter estimation, in future research,
we aim at jointly modelling the grades and the events of students’ career so
that the measurement error is properly taken into account in the model.
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ABSTRACT: Modelling noisy data in a network context remains an unavoidable ob-
stacle; fortunately, random matrix theory may comprehensively describe network en-
vironments effectively. Thus it necessitates the probabilistic characterisation of these
networks (and accompanying noisy data) using matrix variate models. Denoising net-
work data using a Bayes approach is not common in surveyed literature. Thus we
briefly introduce a new matrix-variate t model in a prior sense for the noise process
following the Gaussian graphical network, for the cases when the assumption of nor-
mality is violated in the model and cases when Gaussian distributions is no longer
sufficient to explain variation in the data. We investigate the performance of this
matrix-variate t distribution applied to a network setting within a Bayesian context.
Calculation and approximation of the resulting posterior are of interest to assess the
considered model’s network centrality measures, which is illustrated using real-life
stock price data.

KEYWORDS: adjacency matrix, Bayesian estimation, Gaussian graphical model, matrix-
variate t, stock price data.

1 Introduction

Let Gt be a sequence of directed networks for t = 1, . . . ,T for T ∈ N. Assume
that the number of nodes do not change with respect to t, but the number
of edges can. Assume that each of the nodes bears a stationary time series of
variables that estimates a sequence of networks Gt at time t. Then an adjacency
matrix is estimated for Gt at each time index t, say YYY t . A stationary time series
implies that network structure itself at time t is nothing more than a deviation
from an underlying adjacency matrix BBB independent of time t. In other words,
the true graphical network structure is stationary. YYY t is thus viewed as ’noisy
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copy’ of BBB given by:

YYY t = BBB+EEEt for t = 1, . . . ,T. (1)

EEEt : n× n is a random error term, independent and identically distributed for
all t = 1, . . . ,T . The matrix-variate Gaussian distribution is fundamental for
inference, but is sometimes inadequate for modelling populations where the
matrix variate-t distribution may be a better fit. There is extensive literature
around a multivariate Gaussian distribution of errors. Articles that date back as
early as the classical linear models (Arnold, 1979) to relatively recent ones on
engineering processes (Amiri et al., 2018), with recent contributions including
the work by Billio et al., 2021. Instead, a t distribution seems a suitable choice
to characterise error. Thus, consider EEEt as matrix-variate t distributed with
corresponding probability density function (pdf), then EEEt ∼ tn,n(000,ΣΣΣ1,ΣΣΣ2) and
the pdf of EEEt is given by,

f (EEEt |ν,000,ΣΣΣ1,ΣΣΣ2) =
Γn(

ν+2n−1
2 )

π( n2
2 )Γn(

ν+n−1
2 )

|ΣΣΣ1|−
n
2 |ΣΣΣ2|−

n
2 |IIIn +ΣΣΣ−1

1 EEEtΣΣΣ−1
2 EEE ′

t |−
ν+2n−1

2 ,

(2)

where Γn(·) is the multivariate gamma function. By the linearity property of
a matrix-variate t distribution, (1) implies that YYYt ∼ tn,n(ν,BBB,ΣΣΣ1,ΣΣΣ2) and is
consequently called the matrix-variate t model. Since BBB,ΣΣΣ1,ΣΣΣ2 and ν are un-
known, they must be estimated. Bayesian methodology for estimating the un-
known parameters is followed and implementing the matrix-variate Gamma
and inverse matrix-variate Gamma as priors for ΣΣΣ1 and ΣΣΣ2 respectively, and
a new graphical t-model as a result. Applying the methodology reveals a
clear discrepancy between estimates from raw data and the Bayesian approach,
which highlights the misleading impact that noise in data has and how it may
lead to more grave consequences for any analysis built upon said noise.

2 A new graphical t-model construction

Assume that the prior density functions are mutually independent. The joint
pdf π(BBB,ΣΣΣ1,ΣΣΣ2,γ,ν) is then proportional to :

γaγ−1νaν−1exp
[
−1

2
tr
(
vec(BBB)′(ΩΩΩ2 ⊗ΩΩΩ1)

−1vec(BBB)
)
− γ

bγ
− ν

bν

]
f (ΣΣΣ1|γ) f (ΣΣΣ2|γ),

(3)
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where f (ΣΣΣ1|γ), f (ΣΣΣ2|γ) are some conditional prior pdfs of ΣΣΣ1 and ΣΣΣ2, respec-
tively. It follows BBB,ΣΣΣ1,ΣΣΣ2,γ,ν has likelihood function equal to:

T

∏
t=1

Γn(
ν+2n−1

2 )

π( n2
2 )Γn(

ν+n−1
2 )

|ΣΣΣ1|−
n
2 |ΣΣΣ2|−

n
2 |IIIn +ΣΣΣ−1

1 (YYY t −BBB)ΣΣΣ−1
2 (YYY t −BBB)′|−

ν+2n−1
2 .

(4)

From (3) and (4) the posterior pdf follows as
T

∏
t=1

Γn(
ν+2n−1

2 )

π( n2
2 )Γn(

ν+n−1
2 )

|ΣΣΣ1|−
n
2 |ΣΣΣ2|−

n
2 |IIIn +ΣΣΣ−1

1 (YYY t −BBB)ΣΣΣ−1
2 (YYY t −BBB)′|−

ν+2n−1
2

× γaγ−1νaν−1exp
[
−1

2
tr
(
vec(BBB)′(ΩΩΩ2 ⊗ΩΩΩ1)

−1vec(BBB)
)
− γ

bγ
− ν

bν

]

× f (ΣΣΣ1|γ) f (ΣΣΣ2|γ). (5)

For this paper, consider the matrix-variate and inverse matrix-variate Gamma
distributions, i.e., ΣΣΣ1 ∼ MGn(δ1,β,(γΦΦΦ1)−1) and ΣΣΣ2 ∼ IMGn(δ2,β,(γΦΦΦ2)−1)
as priors. Notice that the scalar shape parameter β can be fixed, or have a
prior imposed on it also. Either way the estimation procedure unaffected. As
is usual with Bayesian estimation, an observed matrix BBBi from the posterior
distribution is an estimate of the true adjacency matrix BBB - thus, the average of
a sample estimates BBB. To simulated a sample, the Gibbs sampling algorithm is
used.

3 Application and evaluation

The methodology is applied to the weekly stock prices of 70 European firms,
resulting in 105 observations. Granger causality hypothesis tests are applied
pairwise for week t. The resulting test statistics belong in a matrix that is an
observed YYY t *. We employ well-known centrality measures, such as a graph’s
degree, closeness, eigen centrality, and betweenness, to evaluate a matrix vari-
ate estimator. These measures are univariate scores that measure a node’s in-
fluence in a graph.

The results from the application are shown in Figure 1†. It is observed that
there are clear discrepancies between the different estimators, with particular

*Data provided by Prof. M. Billio, University of Venice, Italy.
†The simulations were run on MATLAB R2022b on University of Pretoria server with

501Gb of RAM and 48 cores. Runtime for simulations was 16h excluding time to compute
Granger causality test statistics.
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Figure 1: Estimated centrality measures: The solid red line and dashed black
lines represent the averages of the raw data, and methodology respectively.

attention to the out-degree, out-closeness, and eigencentrality. The raw data
seems to underestimate the centrality measures. In other words, the discrepan-
cies highlight how noise left in data may jeopardise the validity and reliability
of analysis built on data.
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ABSTRACT: An empirical analysis on players’ position on the field throughout a soc-
cer match is presented. For this purpose, a Bayesian mixture of experts model is de-
fined, allowing for flexible specification of concomitant covariates on the component
weights as smooth functions represented by cubic splines.

KEYWORDS: mixtures of experts models, Gibbs sampling, Bayesian P-splines

1 Introduction

Pettersen et al. (2014) present a dataset of body-sensor traces and correspond-
ing videos from three professional soccer games captured in late 2013 at the
Alfheim Stadium in Tromsø, Norway. Tromsø - Stromsogodset is selected for
this study, since it is the only one which is valid for the national competition.
This game was played on November 3rd, 2013, and it ended with no scores.
Player data, including field position, are sampled at 20 Hz using the ZXY Sport
Tracking system.
The aim of this analysis is to study how a player’s position is affected by a
teammate’s one and possibily identify a finite number of different phases of
the game. Obviously, this relationship depends on many factors, such as the
two player’s role and which area of the field they are supposed to cover. For
this reason, this study focuses on a couple of players playing close to each
other.

2 Model specification

The study concentrates on the player covering the right full-back position,
identified with tag 9, and assuming that his longitude and latitude (y1 and y2,
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respectively) can reasonably be approximated by a bivariate Gaussian distribu-
tion. Then, the two-dimensional location of the centre-back playing closer to
him, Player 13, are taken as concomitant covariates (x1,x2). Let c be a vector
of latent variables such that, for each time i, ci = g if i belongs to cluster g.
Conditioning on ci and xi, it is assumed that yi follows a Gaussian distribution
with vector of means µci and positive definite covariance matrix Σci . Hence,
the conditional density of yi given xi can be written as the following mixture
of bivariate Gaussians:

f (yi|xi) =
G

∑
g=1

πg(xi) fMV N2(µg,Σg), (1)

with fMV N2(µg,Σg) being the density of a bivariate Gaussian distribution and
component weights πg(xi) = Pr(ci = g|xi) > 0, so that ∑G

g=1 πg(xi) = 1, for
i = 1, . . . ,501 and g = 1,2, . . . ,G. To allow for flexible specification of such
probabilities, a similar methodology to that proposed by Berrettini et al. (2021)
for latent class models is adapted to the continuous case. More specifically,
prior probabilities are expressed as smooth functions of the covariates repre-
sented through Bayesian P-splines (Lang & Brezger, 2004), and estimation is
carried out following the data augmentation scheme suggested by Früwirth-
Schnatter et al. (2012). Regarding the parameters of the component condi-
tional distributions of the mixture, Gaussian and inverse Wishart priors are
respectively assigned to µg and Σg, as in Marin et al. (2005). The resulting
MCMC algorithm does not require any Metropolis-Hastings step.

3 Soccer player positions data

To carry out the analysis, some assumptions are made. In particular, the obser-
vations are assumed to be independent across time: to make this assumption
more realistic, the data are thinned out to 501 observations over more than 90
minutes of play, leading to a distance of approximately 10 seconds between
each pair of consecutive observations. Since between the first and the second
half of the game the direction of play changes, preparing this dataset requires
a 180◦ rotation of the locations observed during the second half. The two di-
mensions of the location of the centre-backs, x1 and x2, representing the long
and short side of the field, respectively, are assumed to have an additive effect
on the log-odds of the component weights. For the analysis, the algorithm is
run for fixed G ranging from 1 to 6. The results produced by the best mod-
els, in terms of AICM, are selected. Observations are allocated into the G
components using the maximum-a-posteriori rule.
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Figure 1. Locations of Player 13 (left plot) and Player 9 (right plot). Different colors
and dot symbols correspond to different clusters.

4 Results

The best model according to AICM has G = 3 components. Figure 1 shows
the locations of the two players during the game, allocated according to the
3-component ME model. The clusters does not seem well separated. Indeed,
without considering the position of Player 13, the best finite mixture of Gaus-
sians with constant component weights suggests the presence of a single com-
ponent. These clusters may be interpreted as phases of the game: in particular,
the blue dots identify the defensive phase, the green triangles the offensive one,
while the red square indicate an intermediate phase. The intermediated phase,
originally associated to the first component (in red), is taken as the reference
to define the log-odds of mixture weights. The splines’ coefficients are trans-
formed accordingly, and, due to space limitations, only the estimated effect of
the location of Player 13 on the probability of the defensive phase of Player 9
is reported in Figure 2. The clusters differ mainly with respect to the long side
(x1) of the field, while the location on the short side seems to be less impactful.
Lower values of the longitude for Player 13 seem to lead to a higher probabil-
ity that Player 9 is in the defensive phase, implying him covering the backfield
too. This probability drops as x1 grows, increasing the odds of the offensive
phase, characterized by a higher longitude and variability. A huge amount of
variability of the estimated effects can be noticed in the plots, especially when
the functions reach large absolute values that correspond to 0 or 1 on the scale
of the probability. This might be also due to the fact that the locations of the
players are not uniformly distributed along the field. It is worth mentioning
that this uneven distribution of the observations seems coherent with the spe-
cific roles of the two players considered in this analysis.
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Figure 2. Estimated effect (and 95% pointwise credible interval) of the location of
Player 13, (x1,x2) on the log-odds of the mixture weights, for Cluster 2 .
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BERG-JOHANSEN, VEGARD, GADDAM, VAMSIDHAR REDDY,
MORTENSEN, ASGEIR, LANGSETH, RAGNAR, GRIWODZ, CARSTEN,
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ABSTRACT: SARIMA models and exponential smoothing methods are classical ap-
proaches to account seasonal dynamics. However, they tipically allow to model just
one periodic component, while many empirical time series data show multiple season-
ality, possibly interlacing toghether. To face this case, different decomposition models
have been proposed in literature, while SARIMA models have been quite neglected.
To fill the gap, in this work we suggest a suitable specification of the SARIMA model,
called mSARIMA, able to account multiple seasonality. To study its performance, we
compare it with two popular seasonal-trend decomposition approaches, namely the
TBATS and MSTL models. A simulation exercise shows that mSARIMA models are
more effective in describing the the different seasonal components.

KEYWORDS: Time series, Multiple seasonality, mSARIMA, seasonal-trend decom-
position models.

1 Introduction

Typically, a SARIMA model allows to account just one periodic component.
When multiple cycles arise, REG-SARIMA or SARIMAX models are often
considered. In this case, only one seasonal component is treated as stochastic
while the other ones are deterministically described using dummy variables,
trigonometric functions or spline functions. Alternatively, a large body of lit-
erature focuses on time series decomposition techniques such as the Seasonal-
Trend decomposition by regression (STR, Documentov & Hyndman, 2022),
the Trigonometric Exponential Smoothing State Space model (TBATS, A.M.
et al. , 2011) and the Multiple Seasonal Trend decomposition using Loess
(MSTL, Bandara et al. , n.d.). The present work aims at showing that a suit-
able specification of SARIMA models allows to consider multiple seasonal
components and effectively estimate them. We denote this class of models
as Multiple Seasonality ARIMA models, briefly mSARIMA. We note, how-
ever, that these models are nothing but suitably constrained specifications of
the general SARIMA models from which they inherit all properties.
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2 The Multiple Seasonality ARIMA model

Let εt be a zero-mean white noise process with variance σ2. We denote by
mSARMA(p,q)× (P1,Q1)S1 × ...× (Pm,Qm)Sm the stationary process Yt

φ(B)
m

∏
i=1

Φ(BSi)Yt = θ(B)
m

∏
i=1

Θ(BSi)εt , (1)

where φ(B) and θ(B) are the usual AR and MA polynomials in B of de-
grees, respectively, p and q, Φ(BSi) = (1 − Φi,1BSi − . . .− Φi,PiBPiSi) is the
i-th seasonal AR polynomial of degree Pi in BSi (i=1,..,m) while Θ(BSi) =
(1−Θi,1BSi − . . .−Θi,QiBQiSi) is the correspondig MA seasonal polynomial
of degree Qi. The polynomials φ(B) and θ(B) describe the non-periodic se-
rial dependence of the time series, while the polynomials Φ(BSi) and Θ(BSi)
model the periodic correlation for the m seasonal components of period Si,
(i = 1, ...,m).
Just to give an example, the 2−SARIMA(1,0)× (1,0)4 × (1,0)7 is given by:

Yt = φ1Yt−1 +Φ1,1Yt−4 −φ1Φ1,1Yt−5 +Φ2,1Yt−7 −φ1Φ2,1Yt−8 −
Φ1,1Φ2,1Yt−11 +φ1Φ1,1Φ2,1Yt−12 + εt .

It is clear that, although 7 different lags are involved, there are only 3 parame-
ters to be estimated and that it can be also thought as a particular constrained
(S)ARMA model. This implies that the stationary conditions for model (1) are
those of a standard (S)ARMA, once the constraints are considered. The same
holds also for the invertibility conditions. Model (1) can be straightforwardly
generalized to the non-stationary case by including suitable unit root polyno-
mials. We can define the non-stationary mSARIMA(p,d,q)×(P1,D1,Q1)S1 ×
...× (Pm,Dm,Qm)Sm process, Yt , by:

φ(B)(1−B)d
m

∏
i=1

Φ(BSi)(1−BSi)diYt = θ(B)
m

∏
i=1

Θ(BSi)εt (2)

where (1−BS)d = (Yt −Yt−S)d is the d−seasonal difference of Yt . As for stan-
dard ARIMA models, the process Xt = (1−B)d ∏m

i=1(1−BSi)di is a stationary
mSARMA. For building an mSARIMA model, the classical Box-Jenkins ap-
proach (Box & Jenkins, 1976) can be applied, with some simple and intuitive
modifications needed to account the presence of more than one seasonal com-
ponent. For the estimation step maximum likelihood methods can still be used
taking care that the mSARMA model is a constrained one. This implies that
the user has to write the specific likelihood to be maximized.
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3 A comparison with other models

In this section we compare the mSARMA with two popular seasonal-trend
decomposition models, namely the TBATS and MSTL models. We analyse,
through a simple Monte Carlo exercise, their ability in whitening the residu-
als’ autocorrelation function. To this end we simulated 500 independent real-
izations of length n = 200 and 500 from the three following mSARMA spec-
ifications. All models include two seasonal components: of periods 4 and 7,
the first two, and of periods 4 and 12, the third one. In the last case, cycles
overlap.

1. Model 1: 2 − SARIMA(1,0,0)× (1,0,0)4 × (1,0,0)7, with φ1 = 0.4,
Φ1,1 = 0.3, Φ2,1 = 0.35 and σ2 = 1;

2. Model 2: 2 − SARIMA(1,0,0)× (1,0,0)4 × (2,0,0)7, with φ1 = 0.4,
Φ1,1 = 0.3, Φ2,1 = 0.25, Φ2,2 = 0.35 and σ2 = 1;

3. Model 3: 2− SARIMA(1,0,0)× (1,0,0)4 × (1,0,0)12, with φ1 = 0.4,
Φ1,1 = 0.3, Φ2,1 = 0.4 and σ2 = 1

For each series we estimated an mSARMA model, a MSTL model and a
TBATS model and we analyzed the residuals time series to check if the multi-
seasonal serial dependence has been completely accounted. To assess the
residuals’ appropriateness we propose a modification of the Pierce test (Pierce,
1978) able to account for multiple seasonality. When 2 periodic components
are present, the hypothesis system to be verified is H0 : ρS1 = ... = ρk·S1 =
ρS2 = ...= ρk·S2 = 0 against H1 : H̄0. When applied to the residuals of a model,
it tests the model’s adequacy in describing both seasonal components. The test
statistics is:

mQS1,S2(k) = n · (n+2)

(
k

∑
j=1

1
n− j ·S1

ρ2
j·S1

+
k

∑
j=1

1
n− j ·S2

ρ2
j·S2

)
(3)

where ρ j is the correlation coefficient at lag j of the considered series. Under
the null hypothesis of no seasonal autocorrelation, it follows a χ2

2k−par distri-
bution, where par is the number of estimated parameters.
In our exercise we computed mQ4,7(5) (for the first two models) and mQ4,12(5)
(for the third model) on the residual series of our three models, i.e. mSARIMA,
MSTL and TBATS, and we counted the percentage of times the null hypothe-
sis is not rejected at a significance level of 5%. Results are given in Table ??: it
is clear that the mSARIMA model produce (sesaonally) uncorrelated residuals
most of times, while the other two models do not, particularly when the sample
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size increases. One could argue that it is not fair considering time series gen-
erated only by mSARMA models: we agree with this point. These results are
very preliminary and other generating processes must be taken into account,
in particular processes with deterministic components. However, we showed
that, when multiple seasonality is generated by an ARMA process, MSTL and
TBATS model are not appropriate to describe this dynamics.

Table 1. Percentage of times, the Pierce test for multiple seasonality does not reject
the hypothesis of seasonal uncorrelation in the residuals of the mSARMA, MSTL and
TBATS models. The level of the test is α = 5%.

mSARIMA MSTL TBATS
Model 1 n = 200 93.2 2.3 42.3

n = 500 92.7 0.0 17.3
Model 2 n = 200 92.5 0.3 6.3

n = 500 91.6 0.0 0.0
Model 3 n = 200 93.9 0.3 1.4

n = 500 94.8 0.0 0.0
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ABSTRACT: The dynamic stochastic blockmodel is commonly used to analyze lon-
gitudinal network data when multiple snapshots are observed over time. The vari-
ational expectation-maximization (VEM) algorithm is typically employed for maxi-
mum likelihood inference to allocate nodes to groups dynamically. To address the
problem of multiple local maxima, which may arise in this context, we propose modi-
fying the VEM according to an evolutionary algorithm to explore the whole parameter
space. A simulation study on dynamic networks and an application illustrate the pro-
posal comparing the performance with that of the VEM algorithm.

KEYWORDS: local maxima, longitudinal networks, node classification, stochastic
blockmodel, variational expectation-maximization algorithm.

1 Introduction

The dynamic stochastic blockmodel (Matias & Miele, 2017) extends the sto-
chastic blockmodel (SB, Nowicki & Snijders, 2001) for the analysis of lon-
gitudinal network data when multiple snapshots are observed over time. This
model aims to identify homogeneous blocks of nodes and to analyze interac-
tions between nodes and their evolution. At each time occasion, nodes are
partitioned into a set of groups whose number is estimated; the probability of
observing an edge between a couple of nodes depends on the assigned groups.

In the inferential context, the variational expectation-maximization (VEM,
Jordan et al., 1999) algorithm has been proposed for maximum likelihood esti-
mation. However, a drawback of this method is that it can be trapped in one of
the multiple local maxima. To account for this problem we propose a modified
version of the VEM through an evolutionary algorithm (EA, Ashlock, 2004).
We perform a Monte Carlo simulation study to evaluate the performance of the
proposed evolutionary VEM (EVEM) algorithm in avoiding local maxima and
improving the accuracy of the posterior classification. We also show an ap-
plication estimating the dynamic SB with data related to face-to-face contacts
between employees to investigate transmission of an infectious disease.
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2 Notation and inference in dynamic stochastic blockmodel

Considering n nodes observed at T discrete times, let Y denote an adjacency
array of dimensions n× n× T , where Y(t) is the adjacency matrix at time t
and Y (t)

i j = 1 if there is an edge between nodes i and j (symmetric association)

at time t and Y (t)
i j = 0 otherwise (i, j = 1, . . . ,n, i ̸= j). The dynamic SB as-

sumes that block membership depends on a set of independent and identically
distributed discrete latent variables Z(t)

i following a Markov chain with k sup-
port points. In this way, each node is partitioned into one of k latent blocks at
every time occasion according to the initial and the transition probabilities de-
noted as αu and πuv, u,v = 1, . . . ,k, respectively. Under the local independence
assumption and conditionally on the latent blocks to which nodes i and j be-
long at time t, the variables Y (t)

i j are assumed to be independent and Bernoulli
distributed with connection probabilities denoted as βuv.

For maximum likelihood inference of SB the VEM was proposed in Ma-
tias & Miele, 2017 to maximize a lower bound of the log-likelihood function
denoted as J (θ), where θ collects the model parameters. More recently, Bar-
tolucci & Pandolfi, 2020, proposed an exact formulation of the VEM algorithm
to improve clustering units across time occasions. They initialize the starting
values for the model parameters through the k-means method since random ini-
tialization is usually ineffective in this context. However, this approach does
not prevent the VEM algorithm from being trapped in the local maxima that
frequently arise with complex data structures.

3 Proposed evolutionary VEM algorithm

The proposed EVEM algorithm is defined by the following features: (i) an ini-
tial “population” denoted as P0 of N candidate solutions for the maximization
problem at issue, here specified as possible arrays of cluster memberships; (ii)
a mutation operator that introduces variations to the existing candidates and
generates new solutions by randomly selecting an observation and providing
an updated cluster membership; (iii) selection of the best solutions based on a
quality measure that favors candidates with higher values of J (θ).

In order to explore the whole parameter space the first candidate for pop-
ulation P0 is obtained according to the k-means deterministic initialization; in
particular, the adjacency matrices Y(t) for t = 1, . . . ,T are row-concatenated
together, and the k-means algorithm is applied on the rows of the resulting
nT × n matrix. Then, the remaining N − 1 candidates are obtained through
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mutation. The procedure alternates the following steps until convergence:

1. P1 ← Update(P0): perform a small number of iterations of the VEM
algorithm on each individual of population P0.

2. P2 ← Mutate(P1): add variation in each individual of population P1 to
encourage a broader exploration of the parameter space.

3. P3 ← Update(P2): perform a small number of iterations of the VEM
algorithm on each individual of population P2.

4. P4 ← Select(P1 ∪P3): consider individuals of both populations P1 and
P3, and retain the N showing the highest value of J (θ) for the next gen-
eration.

Convergence is assessed considering the best solution of population P4, ana-
lyzing the relative difference of J (θ) at two consecutive steps and that between
the corresponding parameter vectors.

4 Simulation study and application

In analogy with the design used in Bartolucci & Pandolfi, 2020, a Monte Carlo
simulation study is conducted, varying the number of nodes (n = 20,50), the
number of latent blocks (k = 2,3), the block persistence (high or low), and
the connectivity parameters (intra-group greater or smaller than inter-group).
For each of the 16 resulting scenarios, we randomly draw 50 networks and
estimate the dynamic SB with both the VEM and the EVEM algorithms. The
effectiveness of the proposed approach is evaluated in terms of the Adjusted
Rand Index (ARI, Hubert & Arabie, 1985) between the true and the estimated
classification at each time occasion.

Simulation results show that the EVEM algorithm outperforms the exist-
ing VEM algorithm in most scenarios, especially those with higher complexity.
For example, considering a scenario characterized by 50 nodes, 3 latent blocks,
low persistence of latent states, and higher intra-group than inter-groups con-
nection probabilities, the ARI equals 0.688 using the VEM algorithm and
0.761 with the EVEM algorithm. In another scenario, with the same features
but opposite connectivity parameter setting, ARI is 0.707 with VEM and 0.784
with the EVEM. In both cases, the improvements are statistically significant.
When using the EVEM algorithm, we also observe a decrease of the mean
squared error between the estimated and true model parameters, computed as
an aggregated measure over all the model parameters.

Real data refer to face-to-face contacts between n = 90 employees in a
building of the Institut de veille sanitaire (French Institute for Public Health
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Surveillance) for ten working days (T = 10), from June 24 to July 3, 2013
(data are available at the website: http://www.sociopatterns.org/
datasets/contacts-in-a-workplace/). The building hosts three
scientific departments (“DISQ”, “DMCT”, and “DES”), logistics (“SFLE”)
and human resources (“SRH”). The adjacency array is built by setting each
element Y (t)

i j equal to 1 if at least one face-to-face contact was registered be-
tween employees i and j at time t, and 0 otherwise.

A dynamic SB with 5 latent blocks is estimated using both VEM and
EVEM algorithms. The resulting classification of employees helps understand
how a certain infectious disease may spread across different departments of
the same building. We observe that the value of J (θ̂) at convergence increases
from −2613 to −2600 when the EVEM algorithm is employed. This is re-
flected in a more accurate classification of the employees in each group of the
network. The EVEM algorithm identifies a specific latent block for employees
from the “DISQ” department, while the VEM algorithm allocates them with
employees from the “DMCT” department. Additionally, the EVEM algorithm
correctly assigns all employees from the “DSE” department to a single latent
block, whereas the VEM algorithm splits them into two distinct blocks.
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ABSTRACT: Decision trees are a popular statistical learning algorithm for classifi-
cation and regression that recursively split the data based on the most informative
characteristics. Unfortunately, they do not have a high predictive power with respect
to other statistical learning methods. To enhances their performances, this paper pro-
poses a support vector machine approach to create oblique decision trees for regres-
sion problems. In this novel model, the split at each node is made through a weighted
support vector machine classifier with a linear Kernel that minimizes the deviance of
the split. We test the model with respect to the usual CART on four public datasets
with numerical predictors on three global metrics: Root Mean Squared Error, Mean
Absolute Deviation, and R2. The results of repeated cross-validation show that the
novel model can overperform the usual Decision trees.

KEYWORDS: Trees, Oblique Split, SVM, Regression, Oblique Trees

1 Introduction

Decision trees (DTs) are a popular statistical learning algorithm for classifi-
cation and regression. They can be easily viewed and interpreted by humans,
making them valuable assets in data. A DT is a tree structure in which each
internal node represents a decision based on a specific characteristic of the
data, and where each leaf node represents a prediction or result. The algo-
rithm works by recursively splitting the data based on the most informative
characteristics until a stopping criterion is met. Unfortunately, DTs are prone
to overfitting and do not have a high predictive power with respect to other
statistical learning methods. To improve their performances oblique DTs were
introduced (Breiman, 2017), and lately, they are gaining interest in the re-
search community. Unlike traditional DTs, in which each node corresponds to
a single variable split and the separation between the branches is orthogonal
to the axes, oblique DTs allow the definition of separation hyper-planes that
can be inclined with respect to the Cartesian axes. In other words, oblique
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DTs use linear combinations of multiple variables to define decision bound-
aries. However, to find the linear combination of variables to construct the
best-suited hyperplane is an NP-hard problem, in fact, to split a node with n
observations using an axis-aligned CART, an exhaustive search would require
no more than n · p evaluations. On the other hand, oblique CART would require
a significantly larger number of evaluations, specifically 2p(n

p

)
. Nevertheless,

oblique DTs have the advantage of generally building smaller trees with better
accuracy compared with axis parallel trees (Wickramarachchi et al., 2016). In
contrast to the Breiman’s approach, we introduce Support Vector Machine Re-
gression Oblique Tree (SVM-ROT). In the Breiman method, the algorithm op-
timizes the coefficients of oblique splits based on a coordinate descent method.
This is an iterative approach where each coefficient is optimized individually
while keeping the others fixed. On the other hand, in SVM-ROT the split at
each node is determined through a weighted support vector machine (SVM)
classifier with a linear Kernel that minimizes the deviance of the split. SVM is
a supervised statistical learning method introduced by Vapnik, 1999 to solve
pattern classification and regression problems, moreover, it can be linear or
nonlinear but is most commonly the former. Essentially, SVM identifies a re-
producible hyperplane that maximizes the margin between the support vectors
of both class labels. To improve the performance of the SVM classifiers, Yang
et al., 2007 suggests adding different weights to observations to different data
points such that the weighted SVM algorithm estimates the best hyperplane
according to the relative importance of the observation in the training data set.
This short paper is organized as follows. Section 2 introduces the model in
detail, in Section 3 the model is tested on 4 datasets and some concluding
comments are reported.

2 Model

SVM-ROT at each node separates the observations given the results of a SVM
classifier. Let us consider N observations characterized by a continuous re-
sponse Y and p continuous features. First, Y is transformed K times into a
dichotomous variable, each time using a different quantile as the threshold for
its partitioning. Then, for each of these dichotomized variables, a weighted
SVM classifier with linear kernel is applied, and the algorithm saves the de-
viance reduction resulting from the two partitions. The algorithm then chooses
the split that has the highest reduction in deviance. The weighting of the SVM
is very important because when the algorithm dichotomizes the target variable
much information is lost. To overcome this problem the absolute values of
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the scaled elements of the target variable Y are used as weights in the classi-
fiers. This process assures that the hyperplane takes into account the values
of the original Y . The result of this process will be a set of coefficients w of
length p, and an intercept b, which describe the separating hyperplane. The
hyperplane will be then expressed in a decision rule similar to that one of the
usual DT, creating the pair of half-spaces: R1(w,b) = {X | w ·x+b ≤ 0} and
R2(w,b) = {X | w ·x+b > 0}, where X is the matrix of the p predictors.

The result will be the division of the feature space into two subsets. This
operation is then applied in a recursive binary partition manner until a certain
criterion is met. These stopping criteria can be the number of elements in a
leaf, the number of elements in a node, or the complexity parameter given by
the ratio between the resulting deviance after the split and the deviance in the
parent node.

3 Application to real datasets

SVM-ROT has been applied to several real datasets using the software R (R
Core Team, 2022). The first is “Body Fat” dataset from Penrose et al., 1985.
In this dataset, the response variable is the percentage of body fat and the
eleven predictors represent several physiologic measurements related to 252
men. The second dataset, called BCF, comes from Grisoni et al., 2016, here
the target variable is the Bioconcentration Factor in log units of 779 chemicals,
while the independent variables are nine molecular numerical descriptors. The
third data set is Auto MPG dataset from Dua & Graff, 2017 consisting of 398
observations, but in which only the seven numerical predictors have been used.
Finally, the last dataset is from Ancell, 2021, it is made up of 413 instances
and contains the 50 year ground snow load at a variety of measurement stations
together with four numerical predictors. The performance of the SVM-ROT
is compared to the one of a CART. Both models were tuned for the complex-
ity parameter with 10-fold cross-validation, and the most parsimonious model
with the one standard error rule was chosen. Then we performed 10 times re-
peated 10-fold cross-validation. The overall performance is computed by Root
Mean Squared Error (RMSE), Mean Absolute Deviation (MAD), and R2. For
the first two metrics, lower values result in better predictive models. However,
RMSE is more sensitive to high errors. R2 is the proportion of variance ex-
plained by the model, this means that a value close to one indicates that the
model explains most of the variance. Table 1 shows the results of the experi-
ments.

In BCF and MPG SVM-ROT shows a better performance with respect to
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Body Fat BCF MPG Snow
SVM-ROT CART SVM-ROT CART SVM-ROT CART SVM-ROT CART

RMSE 5.385(0.151) 5.396(0.198) 0.776(0.008) 0.795(0.008) 3.245(0.071) 3.367(0.073) 1.506(0.0521) 1.445(0.058)

MAD 4.422(0.109) 4.430(0.170) 0.597(0.008) 0.613(0.005) 2.404(0.061) 2.460(0.068) 0.898(0.027) 0.940(0.027)

R2 0.604(0.022) 0.602(0.031) 0.674(0.008) 0.656(0.005) 0.833(0.008) 0.819(0.008) 0.861(0.007) 0.871(0.011)

Table 1. Results of SVM-ROT and CART for all four dataset. The means (standard
errors) of the 10-times 10-fold cross-validation of the three metrics are reported. In
bold the best model for each metric and dataset.

CART for all three global metrics. Instead, in “Snow” the improvement is
only for MAD, whilst for “Body Fat” the results are almost identical. Nev-
ertheless, as at each node, the SVM-ROT splits the predictor space using all
the covariates at once, so SVM-ROT is prone to overfit the data. In the future,
it will be then interesting to use this novel model with an ensemble learning
approach such as random forests or gradient boosting, or to apply a kind of
feature selection at each split.
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ABSTRACT: In this work, we compare five different methods proposed in forensic
statistics to cope with the rare type match problem. This problem arises when the DNA
profile of a suspect coincides with the profile from a crime sample, but it is not present
in the available database collected from the population of reference. We compare
the methods designed to evaluate the likelihood ratio in this framework by using a
set of supervised cases and by considering each method as a classifier that provides
the posterior probabilities of two alternative hypotheses, those of the prosecution and
the defense, starting from a grid of prior probabilities. We compare them using the
value of the posterior cross entropy and decompose it into two terms quantifying their
calibration and refinement loss.

KEYWORDS: Forensic statistics, Soft Decisions, Empirical Cross Entropy

1 Introduction

The rare type match problem is the challenging situation faced by a forensic
statistician who has to provide the value of a match between the characteristic
(ỹ) of a crime stain and that of a suspect when ỹ is not in a database of refer-
ence of size n. The information provided by evidence, y, is evaluated through a
likelihood ratio that can lead to the posterior odds of the hypotheses formulated
by the prosecution and the defense, H ∈ {hp,hd}, for a grid of prior probabil-
ities. Several methods have been designed in the literature to cope with this
problem when evidence consists of Y-STR profiles. We aim to compare these
methods according to Bayesian decision theory, evaluating the expected cost
of decisions expressed as posterior probabilities for the two hypotheses. Using
strictly proper scoring rules as cost functions, the expected cost can be de-
composed into two components corresponding to calibration and refinement,
features of a classifier useful to guide the choice among alternative methods.

Y-STR are polymorphic loci on the Y-chromosome containing a repeated
sequence of nucleotides. Individuals differ by the number of times the se-
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quence appears at each locus. A Y-STR profile is a list of the numbers of
repetitions at a finite number (typically 7 to 23) of loci. The Y-chromosome
is only contributed by the father so that there is no recombination; the loci are
dependent and cannot be modeled separately. For this reason, a profile must
be considered as a whole, and, in case of a rare type match, no frequencies are
available from the database to estimate the rarity of the ỹ profile.

2 Proposals for the LR evaluation in case of a rare type match

We want to compare methods that address the rare type match problem differ-
ently. We restrict ourselves to five methods assuming that the observed profiles
are an i.i.d. sample and not assuming any genetic model; other possibilities ex-
ist, e.g. (Andersen et al., 2013), but are not directly comparable.

A first group of methods copes with the rare type match problem by in-
cluding the suspect profile in the reference data base:

• Augmented Count (AC), is a frequentist method for which:

LRAC = (n+1)/(nỹ +1) = n+1,

with nỹ equal to the frequency of ỹ in the database.
• The Bayesian AC, B-AC, (Cereda, 2017a) assumes that the frequency

of ỹ in the database is distributed according to a Bin(n,φỹ), with φỹ, the
unknown probability of ỹ in the population, distributed according to a
Beta(1,1) distribution. These assumptions yield to:

LRB−AC = (n+3)/(nỹ +2) = (n+3)/2.

A second group looks at the list of profiles in the data, including the suspect
profile, as partitioned into subsets containing the same Y-STR profile. Building
upon different assumptions, the methods evaluate the LR by summarizing the
data through πn+1, the vector containing the cardinality of the subsets.

• The two-parameter Poisson Dirichlet method (2PD) (Cereda et al., 2023)
assumes an infinite number of Y-STR profiles in the population and that
the vector of their ordered relative frequencies follows a 2PD distribution
with parameters α ∈ (0,1) and θ >−α. Thus, the LR becomes:

LR2PD =

[∫ 1−α
n+1+θ

p(α,θ | πn+1)dαdθ
]−1

.

• The Generalized Good (GG) method (Cereda, 2017b) evaluates the LR:

LRGG = nn1/2n2,

with n1 and n2 the number of singletons and doublets in the database.
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• The Brenner’s kappa method (Bk) (Brenner, 2010) evaluates the LR as:

LRBk = (n+1)2/(n−n1).

3 The posterior cross entropy and its decomposition

We use tools developed by Bayesian decision and information theory to eval-
uate the five reviewed proposals. Starting from an LR provided by a method
m∈ {AC, B-AC, 2PD, GG, Bk}, LRm, the evaluation concerns the distribution
pm(H | y) with pm(hp | y) = LRmO(H)

1+LRmO(H) , where O(H) =
p(hp)
p(hd)

is the prior odds.
We consider the log cost function, acting when H is known:

C[pm(h|y)] =
{

− log2(pm(h|y)) if H = h
− log2(1− pm(h|y)) if H ̸= h .

Since H is usually unknown, we must consider the expected cost correspond-
ing to Shannon’s Entropy of H|y.

In comparing methods, the mixing distribution of the costs, p(·|h), can be
thought of as how Nature expresses the uncertainty on Y |h and, consequently,
via Bayes’ theorem, on H|y. Moreover, we are interested in an average over
all the possible evidence y which could arise from the population. This leads
to the posterior cross entropy:

CE p,pm(H | Y ) =− ∑
h∈{hp,hd}

p(h) ∑
y∈Y

p(y | h) log(pm(h|y)) = Dp,pm(H | Y )+Ep(H | Y ).

As a result, CE p,pm(H | Y ) is the primary criterion of evaluation. The two
other criteria are a) Dp,pm(h | Y ), the Kullback-Leibler divergence that quan-
tifies the calibration loss, i.e., how the method puts forward posteriors on H
in agree with Nature; b) Ep(H | Y ), the posterior entropy that quantifies the
refinement loss, i.e., the degree of sharpness provided in discriminating hy-
potheses. We denote the evidence generically by y, but different methods pro-
vide probability distributions based on different statistics. Unfortunately, we
cannot directly compute the two terms in the decomposition since we have
no access to p(y|H), so we provide empirical estimates that require a strategy
for building a database of supervised cases starting from a large sample from
the population. The proposed solution is based on a Monte Carlo approach
and relies on a Pool-Adjacent-Violators (PAV) algorithm that provides an ap-
proximate solution. Our results can be presented as the so-called ECE-plot,
showing each method’s empirical posterior cross-entropy evaluated for differ-
ent prior probabilities p(h). An example is in Fig 3, where we can compare the
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ECE of the five methods before and after applying the PAAVV algorithm. Fig 3
(left) shows that 2PD-B, exploiting πn+1, achieves the smallest ECE ; while,
the worst method is AC-B which uses only the size of the data and makes
the lazy assumption of a flat prior distribution on the probability of the “rare”
characteristic. Fig 3 (right) shows that, once recalibrated, all the methods vve
almost the same refinement so that the main ffferences attain calibration.
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ABSTRACT: An analytical solution to Bayesian Shannon entropy estimation under
general Gibbs-type priors has been devised in 2014 as a limiting case of Bayesian
Tsallis entropy estimation. Here we propose a different approach and derive a Monte
Carlo solution under normalized Inverse Gaussian prior relying on known results for
its stick-breaking representation.
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1 Introduction

Interest in Shannon entropy H1(p) = −∑i pi log pi as an index of diversity of
a population of species arises in many different fields spanning from ecology,
genetics, information theory, computer science, cryptography, neuroscience,
linguistics and many others. It stands out among diversity indices for being
”additive” and being, with its monotonic transformations, the only measure
which weighs species (categories) in proportion to their population abundances
pi. The typical problem in estimating diversity indices from a finite set of ex-
perimental data is that relative abundances are a priori unknown and replacing
them by sample relative frequencies, as in the maximum likelihood approach,
produces negatively biased estimators, especially in biological communities
where a large number of species has relatively small abundances and many
of the rare species remain unobserved. A wide range of estimation methods
have been proposed to overcome this drawback both in the Bayesian like in
the frequentist approach. See Cerquetti (2014) and references therein for an
account.

The normalized Inverse Gaussian prior, as introduced in Pitman (2003),
is a Gibbs-type prior of parameter α = 1/2 whose EPPF has the character-
istic product form pα,V (n1, . . . ,nk) = Vn,k ∏k

j=1(1−α)n j−1, for α ∈ (−∞,1)
and Gibbs weights V = (Vn,k) satisfying the backward recursive relation Vn,k =
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(n−kα)Vn+1,k +Vn+1,k+1 where V1,1 = 1 and (x)y = (x)(x+1) · · ·(x+y−1) is
the usual notation for rising factorials. This class has been largely investigated
during the last twenty years both from a theoretical like from an applied per-
spective mostly with respect to hierarchical mixtures modelling (see e.g. Lijoi
et al. 2005, Favaro and Teh, 2013). Actually its implementation in diversity
estimation, as an alternative to the Dirichlet prior and to the two-parameter
Pitman-Yor prior, has received less attention.

2 Results

Moving from some preliminary results in Archer et al. (2014) the first gen-
eral solution to Bayesian nonparametric estimation of Shannon entropy under
Gibbs-type priors has been devised in Cerquetti (2014) as a limiting case from
a result for m-generalized Tsallis entropies.

Proposition 1. (Cerquetti, 2014). Let P = (Pi)i≥1 be a random discrete distri-
bution belonging to the (α,V ) Gibbs-type family, then, for ψ0(·) the digamma
function, prior expected Shannon entropy is given by

Eα,V [H1(P)] =− lim
m→1

∂
∂m

Vm,1 −ψ0(1−α). (1)

Let n = (n1, . . . ,nk) be the multiplicities of the first k species observed in a
random sample of size n from P then expected posterior Shannon entropy is
given by

EV,α [H1(P) | n] =−∑ j(n j−α)
Vn,k

[
limm→1

∂
∂mVm+n,k +ψ0 (n j −α+1)Vn+1,k

]
(2)

− 1
Vn,k

[
limm→1

∂
∂mVn+m,k+1 +ψ0(1−α)Vn+1,k+1

]
.

Equations (1) and (2) imply the availability of the Gibbs weights V = (Vn,k)
in a sufficiently tractable analytical form. But this doesn’t always happen in
the Gibbs-type class. The weights of the normalized Inverse Gaussian par-
tion model, for example, are notoriously difficult to handle both analytically
and computationally (see Lijoi et al. 2005, Arbel and Favaro, 2021) neverthe-
less, in such a case, Shannon entropy estimation can be faced by a different
route. Cerquetti (2014) shows that if the distribution of the size-biased atoms
of the specific Gibbs prior are known explicitly, like e.g. when a stick-breaking
construction has been devised, moments of Shannon entropy can also be ob-
tained mimicking the approach in Archer et al. (2013) for the two parameter
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Poisson-Dirichlet priors. In the following results we rely on the stick-breaking
construction of the normalized Inverse Gaussian prior as devised in Cerquetti
(2022) moving from results in Pitman (2003). For T an inverse Gaussian r.v.
of parameters (1/v,1) and χ2

1 and χ2
2 two independent chi-square (1) r.v.s in-

dependent from T then

P̃1,nig
d
=

χ2
1

T−1 +χ2
1

(3)

and

P̃2,nig
d
=

(
χ2

2
T−1 +χ2

1 +χ2
2

)(
1− χ2

1
T−1 +χ2

1

)
. (4)

Given the first two size-biased picks from a normalized Inverse Gaussian
prior (v,1), prior expected first and second moment of Shannon entropy can be
easily derived, for example, as

EP[H1(P)] =−EP1 [log(P̃1)] (5)

E[H1(P)]2 = E[P̃1
(
log P̃1

)2
]+E[log P̃1 log P̃2(1− P̃1)]−E[

(
log P̃1

)2
]. (6)

A preliminary investigation of the prior behaviour of Shannon entropy un-
der NIG prior for different values of the parameter v can then be performed via
Monte Carlo sampling.

As for the posterior expectation, i.e. the Bayesian estimator under quadratic
loss function, we can state the following result.

Proposition 3. Let (n1, . . . ,nk) be the vector of the multiplicities of the k dif-
ferent species observed in a sample of size n from P ∼ NIG(v,1). Let Rn,k
be the posterior missing mass, P̃j|n j, for j = 1, . . . ,k the posterior relative
abundances of the k observed species in order of appearance and Q̃1 the first
size-biased pick from the unseen species proportions, then

E[H1(P)|n1, . . . ,nk] =−EP|n

[
k

∑
j=1

P̃j|n j log(P̃j|n j)

]
−ER,Q1

[
Rn,k log(Rn,kQ̃1)

]
.

(7)

Equation (7) can be evaluated relying on Monte Carlo sampling. We just
need to be able to simulate from the posterior missing mass, i.e. the propor-
tion of the unseen species in the sample, from the first size-biased pick from
the unseen species proportions and from the posterior relative abundances of
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the species seen. It can be shown that the availability of the stick-breaking
construction is enough for the task.

Remark 1. Results (5), (6) and (7) follow from standard arguments in the the-
ory of size-biased permutations and their corresponding stick-breaking con-
structions. Here we omit explicit proofs for space limits but those will be
provided - together with the details and the algorithm of the Monte Carlo sam-
pling - in an extended version of this contribution in preparation (Cerquetti,
2023).
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ABSTRACT: Motivated by a problem that commonly arise in the food industry, a
methodology based on the Single Functional Index Model (SFIM) is proposed and a
test procedure to specify the link function between the real response and the functional
covariate is described and applied.
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1 Introduction

In the food industry, to obtain the composition of a given substance in terms
of protein, fat, moisture, etc. is an important task. Since a full–scale chemical
analysis is often costly and time consuming, it is preferred to estimate that
composition by using spectrometric curves which can be obtained easily as
the absorption of a reflected light for various wavelengths. In that situation a
regression model with a scalar response (the percentage of the component) and
a functional covariate (the spectrometric curve, or a transformation of it) can
be profitably used. Consider for instance the prediction of the fat proportion by
using the near-infrared spectra of 39 milk specimens obtained by SCiO device
recorded between 740 and 1070 nm in Figure 1 and originally considered in
Riu et al., 2020. This dataset has been used Di Brisco et al., 2023, where some
functional parametric and nonparametric regression models have been applied
and compared.

One can note that, if full nonparametric approaches are exploratory but suf-
fer of dimensionality problems, parametric models are easily interpreted but
not flexible. A useful alternative in this research field can come from the semi-
parametric regression approaches that combine flexibility and interpretability.
In particular the class of Single Functional Index Model (SFIM) defines a rela-
tionship between the functional predictor X and the real–valued random vari-
able Y through an unknown real link function g that acts on a projection of the
functional predictor along an unknown direction θ, subject to an identifiabil-
ity condition: Y = g(⟨X ,θ⟩)+E , where ⟨X ,θ⟩=

∫
X (t)θ(t)dt, ∥θ∥2 = 1 and
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θ(t) > 0 for a fixed t. A methodology which combines a spline approxima-
tion of the functional coefficient θ and the one-dimensional Nadaraya-Watson
approach to estimate the link function g are proposed in Ferraty et al., 2013.
The main advantage in using SFIM is the possibility to work in the one di-
mensional analogue of an infinite dimensional problem, through the projective
strategy, and hence to visualise an estimate of g from the observed data and
hence suggests the nature of the relationship of X and Y . This allows to pos-
tulate a target link function g0 and test its compatibility with the observed data
at a significance level.

The new test procedure in the SFIM context based on the conditional mo-
ment test approach has been defined and analyzed in Chan et al., 2023. This
work aims to summarize the main features of such a test and apply it to the
spectrometric example. In particular, after illustrating the basic principle of
the test in Section 2, the application to the real data is discussed in Section 3.

2 The test principle

Consider the SFIM and define G0 = {gβ
0 : R → R,β ∈ Rd+1}, where gβ

0 is a
known function depending on the parameter β= (β0,β1, . . . ,βd)∈Rd+1, d ≥ 1
integer. Consider then the following hypothesis:

H0 : g ∈ G0 vs. H1 : g ∈ G1

where G1 is a set of real functions gβ
1 such that G1 ∩G0 = Ø.

Define E = Y − gβ
0 (⟨X ,θ⟩) and E [E |X ] = g(⟨X ,θ⟩)− gβ

0 (⟨X ,θ⟩). The
quantity Q =E [EE [E |X ]w(X)] , where w(X)> 0 is a weight function, is null
under H0 and strictly positive under H1.

To implement the test procedure, an empirical version of Q has to be de-
rived from a sample (Xi,Yi), i = 1, . . . ,n drawn from (X ,Y ). Assuming the
projection random variable ⟨X ,θ⟩ admits a positive probability density func-
tion fθ, then a possible choice for the weight function is w = fθ. By taking a
Nadaraya–Watson type nonparametric kernel estimate of E [E |X ] at the point
Xi and a cross–validated kernel estimate of fθ, the empirical version of Q is:

Qn

(
θ̂
)
=

1
n(n−1)h

n

∑
i=1

n

∑
j=1, j ̸=i

ÊiÊ jKθ̂
i j,

where θ̂ is an estimate of θ and Êi = Y −gβ̂
0

(〈
Xi, θ̂

〉)
, where β̂ is an estimate
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for β. The standardised test statistic is Tn = n
√

hQn

(
θ̂
)
/νn

(
θ̂
)

where

ν2
n

(
θ̂
)
=

2
n(n−1)h

n

∑
i=1

n

∑
j=1, j ̸=i

E2
i E2

j

(
Kθ̂

i j

)2
.

To compute the p-value and to derive the critical region of the test at the sig-
nificance level α, the derivation of the asymptotic null distribution for Tn is
required. Under appropriate assumptions, one can prove that Tn ∼ N (0,1), as
n diverges. Then one rejects the null hypothesis if Tn ≥ z1−α, where z1−α is
the (1−α)-th quantile of the standard normal distribution. For further details,
interested readers are invited to consult Chan et al., 2023.

3 Application to spectrometric data

Consider the SFIM involving the original spectra as covariate and the quantitiy
of fat as response. Some attempts with first and second derivatives of the spec-
trometric curves have been performed but with a deterioration in the quality of
the prediction (and this is coherent with the models in Di Brisco et al., 2023).
In Figure 1 the estimates θ̂ and ĝ of the direction θ and link function g are
plotted. Observing the shape of the former, it seems that the relevant part of
the spectrum in predicting the fat content is between about 950 and 1070 nm,
whereas the latter suggests that a linear specification for the model seems not
reasonable. For what concerns the prediction ability of that model, one used
the RMSE, that is ∑i (yi − ŷi)

2 /∑i y2
i , and the MAPE, that is ∑i |yi − ŷi|/yi; the

first index equals 0.015 and the second one 0.096.
At this stage it is possible to carry out the specification test; in particular

the following polynomial and logistic null models are considered:

H p
0 : g0 (u) = β0 +

p

∑
j=1

β ju H log
0 : g0 (u) = eβ0+β1u/(1+ eβ0+β1u)

where u =
〈

x, θ̂
〉

and p = 1,2,3 (corresponding to linear, quadratic and cu-
bic link espectively). Since all the real parameters β j are unknown, they are
estimated by an OLS approach under the null hypothesis. The p-values cal-
culated by using the asymptotic null distribution are: 0 for H1

0 , 0.035 for H2
0 ,

0.207 for H3
0 and 0 for H log

0 . One can conclude that the linear, quadratic as
well as logistic assumptions on the link function are not compatible with the
empirical evidence, whereas a cubic link could be a good choice to model
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the relationship. Therefore, a model to predict the content of fat Y in milk
specimens starting from the spectrometric curve X can be specified as follows:
Y = 0.014−0.69 · ⟨X , θ̂⟩+10.6 · ⟨X , θ̂⟩2 −33.2 · ⟨X , θ̂⟩3 +E .
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Figure 1. Milk spectra recorded using SCiO device (top), Estimated direction θ (bot-
tom left) and estimated link function (bottom right) for the SFIM.
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ABSTRACT: We propose an extension of latent class models to deal with multilevel cross-
classified data structures, where each observation is considered simultaneously nested
within two groups, such as for instance, children within both schools and neighborhoods.
We show how such a situation can be dealt with by having a separate set of mixture
components for each of the crossed classifications. Unfortunately, given the intractability
of the derived loglikelihood, the EM algorithm can no longer be used in the estimation
process. We therefore propose an approximate estimation of this model using a stochastic
version of the EM algorithm similar to Gibbs sampling.
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1 Introduction

Latent class analysis (LCA) is a popular model-based approach for data clustering
of units on the basis of observations arising from a set of categorical indicators.
When the data have a multilevel hierarchical structure with units nested within
higher level observations, such as children nested within schools, a possible ex-
tension (Laird, 1978) discussed in Vermunt, 2003 and Vermunt, 2008 takes two
levels of clustering with separate latent variables for lower-level units and higher-
level ones. Sometimes data have a cross-classified structure with units grouped
within multiple higher level units, for example, children can be considered nested
within both schools and neighborhoods. In this contribution we propose to ex-
tend Multilevel Latent Class analysis to handle cross-classification. Given the un-
tractability of the derived likelihood the standard EM algorithm can not be applied
in the estimation, and we propose to use a stochastic version of the EM algorithm
that can handle the hierarchy of units but also their double cross-classification,
similar to what done in Keribin et al., 2015 for coclustering.
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2 Model definition

Let Yi jkq be the response on categorical indicator (or item) i (i = 1, . . . , I) of indi-
vidual or first level unit j ( j = 1, . . . ,nkq) belonging simultaneously to the group
level units k (k = 1, . . . ,K) and q (q = 1, . . . ,Q). We denote with Xjkq, Wk and
Zq the discrete latent variables respectively for membership of level-1 units and
for the two group level units. A particular latent class will be indicated with ℓ
(ℓ = 1, . . . ,L), for level-1 units, h (h = 1, . . . ,H) and r (r = 1, . . . ,R) for level-2
units. For ease of notation, we focus on binary indicators and denote with πi|ℓ the
probability distribution parameters of each item within the first level latent class.
The data model consists of two parts, described through two separate equations,
one for the level-2 cross-classified (or higher level) units and one for the level-1
(or lower level) units. Each of the two equations is a mixture of probabilities. The
model for the higher part is described, in the complete data form, by

P(Ykq,Wk = h,Zq = r) = P(Wk = h,Zq = r)P(Ykq|Wk = h,Zq = r)

= P(Wk = h,Zq = r)
nkq

∏
j=1

P(Y jkq|Wk = h,Zq = r)

= P(Wk = h)P(Zq = r)
nkq

∏
j=1

P(Y jkq|Wk = h,Zq = r).

We assumed independence of observations within a combination of groups given
their belonging to the cross-classified latent classes, and also marginal indepen-
dence of the two higher level latent classes Wk and Zq.
The second part models the density of observations conditionally to their simulta-
neous belonging in higher level cross-classified latent classes, that is:

P(Y jkq|Wk = h,Zq = r) =
L

∑
ℓ=1

P(Xjkq = ℓ|Wk = h,Zq = r)
I

∏
i=1

P(Yi jkq|Xjkq = ℓ),

in which we have assumed the local independence of indicators within latent
classes.

3 Parameters’ Estimation

The estimation of model parameters θθθ = {πℓ|hr,πh,πr,πi|ℓ}, requires the maxi-
mization of the observed likelihood of the model in the form

L(θθθ;y) =
H

∑
h1=1

H

∑
h2=1

· · ·
H

∑
hK=1

R

∑
r1=1

R

∑
r2=1

· · ·
R

∑
rQ=1

K

∏
k=1

P(Wk = hk)
Q

∏
q=1

P(Zq = rq)×
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nkq

∏
j=1

[
L

∑
ℓ=1

P(Xjkq = ℓ|Wk = hk,Zq = rq)
I

∏
i=1

P(Yi jkq|Xjkq = ℓ)

]
.

The presence of a double missing data structure at higher level, with Wk and Zq
unobserved, causes that the likelihood cannot factorize as a product of the mixing
probabilities as for standard LC and multilevel LC models. The likelihood be-
comes easily untractable and standard EM algorithms cannot be directly applied
for its maximization. We propose to consider a Stochastic version of the algo-
rithm with the inclusion of a Gibbs sampling scheme between the E and the M
step. The Stochastic step consists in the consecutive sampling from marginal pos-
terior distributions of higher level and lower level latent classes, which reduces
the computational burden.

E and S step

After initialization of πh = P(Wk = h), πr = P(Zq = r), πℓ|hr = P(Xjkq = ℓ|Wk =
h,Zq = r) and πi|ℓ iterate the following sampling steps

1) Draw w(t) from a Multinomial distribution with probabilities

P(Wk = h|yk,z(t−1)) =
πhP(Yk|z(t−1),Wk = h)

P(Yk|z(t−1))
,

P(Yk|z,Wk = h) =
QK

∏
qk=1

R

∏
r=1

[ nkq

∏
j=1

P(Y jkq|Wk = h,Zq = r)

]zr
q

;

2) Draw z(t) from a Multinomial distribution with probabilities

P(Zq = r|yq,w(t)) =
πrP(Yq|w(t),Zq = r)

P(Yq|w(t))
,

P(Yq|w,Zq = r) =
KQ

∏
kq=1

H

∏
h=1

[ nkq

∏
j=1

P(Y jkq|Wk = h,Zq = r)

]wh
k

;

3) Draw x(t) from a Multinomial distribution with probabilities

P(Xjkq = ℓ|y jkq,w(t),z(t)) =
[
πℓ|h,rP(Y jkq|Xjkq = ℓ)

]wh
jkzr

jq

P(Y jkq)
,

where wh
k , zr

q, wh
jk, zr

jq and xℓjkq are all binary indicators of units’ membership
at different levels, in particular wh

jk, zr
jq are the expansion of higher level

latent class indicators over the first level units j.
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M step

πh =
∑K

k=1 wh(t)
k

K
, πr =

∑Q
q=1 zr(t)

q

Q
,

πℓ|hr =
∑n

j=1 wh(t)
jk zr(t)

jq xℓ(t)jkq

∑n
j=1 wh(t)

jk zr(t)
jq

, πi|ℓ =
∑n

j=1 xℓ(t)jkq yi jkq

suf

ha
T

satisf

∑n
j=1 xℓ(t)jkq

.

Final estimates are calculated as the mean over the total number of iterations,
burn-in period excluded.

Results from simulation studies with data generated under varying scenarios,
prove that the estimators have faactory finite sample properties. In figure 1 is
reported the error resulting from the estimation of πℓ|h=1,r=1 over 50 binary simu-
lated datasets with fixed number of classes L=4, H=R=2. Twwo scenarios of moder-
ate increasing separation avve been compared. It emerges that the average across
replications is close to the true value, with an improvement with the increase of
the number of groups. Similar results are observed for the other first-level and
distribution parameters. Almost no error is observed for high-level latent class
parameters. In the implementation of the SEM-Gibbs 150 iterations have been
considered, including 50 burn-in. These are ffificient for convergence.

ErrFigure 1. roor on the estimation of πℓ|h=1,r=1.

Resear

J
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ABSTRACT: Multivariate Regression Tree is a tree where univariate response vari-
able has been substituted by a multivariate response variable. It has been proposed
to investigate complex ecological data. We apply the Multivariate Regression Tree to
investigate social and economical issues in order to comprehend if this method can be
generalized and used in different research fields. We apply the Multivariate Regres-
sion Tree to identify the causes of death in Italian Counties in 2019. The first results
evidence the capacity of Multivariate Regression Tree to define nodes characterized
for specific causes of death and to classify together geographical areas with similar
impact levels of the variables.

KEYWORDS: Multivariate regression tree; semi-supervised clustering; causes of deaths

1 Introduction

Tree-based methods define a wide set of methodologies finalized to partition
the features’ space in different areas to realize classification and regression
analysis (De’ath & Fabricius, 2000). The aim is to obtain a subset more homo-
geneous compared to the initial set. A tree can be univariate or multivariate.
The adjective ”multivariate” is used to define two approaches. The first is re-
lated to the use of more than one attribute in the partition of the observations.
The second is characterized by the introduction of the model of one outcome
variable composed of more than one level.
In this paper, we focus on the second approach and on its possible use in the
economical field. Specifically, we focus on the Multivariate regression tree
(MRT) proposed by (De’Ath, 2002). It is a natural extension of univariate
regression trees, with the univariate response of the latter being replaced by a
multivariate response (De’Ath, 2002, p. 1106). The method has been proposed
to investigate, describe and predict the relationship between the multi-species
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data and the environmental characteristics. It is structured to analyze the com-
munity data without making assumptions about the form of relationship be-
tween the species and their environment. The nodes identified with MRT are
characterized by the presence of a reduced number of species and a habitat
with specific environmental characteristics. To our knowledge, this method
has been used only to analyze complex ecological data. We attempt to use it to
investigate a social, medical and economical issues. More in detail, we apply
MRT to comprehend which aspects can impact on the number of deaths in a
specific area. We focus on the data of Italian Counties in 2019.
Three sections, besides the introduction, complete this study. Firstly, the MRT
methodology has been presented. Secondly, the results have been proposed
and, finally, some concluding remarks are highlighted.

2 Methodology

MRT transforms the univariate tree into a multivariate including in the model
a multivariate response and redefining the impurity of the node. De’Ath, 2002
has proposed two different measures of impurity. In the first case, MRT op-
erates using an impurity measure called sums of squared distances (SSD) and
minimizing the SSD of sites from the centroids of the nodes to which they
belong. The sum of squares multivariate tree (SS-MRT) has been calculated
through the following formula: ∑i j (xi j − x̄ j), where xi j is the species data for
site i and species j and x̄ j is the mean. The measure can also be calculated
considering the median value. In the second case, MRT is built using a dissim-
ilarity matrix and considering the dissimilarities as a distance measure. The
nodes are defined as minimizing the intersite sums of squared distances within
the clusters. The impurity measure is defined as: ∑i>kk d2

ik, where d2
ik identi-

fies the squared dissimilarities between sites i and k. The MRT built using the
first impurity measure can be considered a form of the multivariate regression.
Instead, the MRT built using distance measures can be considered a method
of constrained clustering, because it allows obtaining clusters that are simi-
lar with respect to a measure of species dissimilarity. In both cases, it allows
identifying nodes that are characterized for the presence of a reduced number
of species and a habitat with specific environmental characteristics.
In this paper, we focus on SS-MRT. We define two different models: the re-
sponse variable is defined by the number of deaths distinct for disease and
gender, the covariates are related to the characteristics of the counties as the
percentage of degrees, and the number of specialists, as explained in Table 1
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Table 1. Variables names and description. The AMR (Adjusted Mortality Rate)
acronyms suffix denotes the target variable (Y ), all other variables are considered
as predictors (X ).

Variable name Extended label
AMRm Adjusted mortality rate from diseases (males)
AMRf Adjusted mortality rate from system diseases (fe-

males)
Doctors rate Rate of doctors enrolled in professional register
Graduates Percentage of graduates over population
Eployment rate Employment rate 15-64 M+F
Pop Population
Aging index (Pop65+)/(Pop0-14)*100
% specialists Percentage of active doctors per indicated special-

ization in the health system per 10,000 inhabitants
VA Value added per person (current prices)

3 Conclusion

We use the MRT to investigate the elements that can impact the number of
death in Italian counties. From a methodological point of view, our study
highlights the importance of using advanced statistical methods to analyze the
complex dataset and interpret the findings to obtain meaningful insights. From
a managerial perspective, our results highlight which aspect can reduce the
mortality rates and support the healthcare policy in allocation decisions.
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Figure 1. The causes of death of Italian women and men, 2019
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EMPIRICAL ANALYSIS OF THE QUADRATIC SCORING
FOR SELECTING CLUSTERING SOLUTIONS
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ABSTRACT: Selecting an optimal clustering solutions is a difficult problem, and there
exist many data-driven validation strategies to perform this task. In this paper, we
focus on a recent proposal, the BQH and BQS criteria, based on quadratic discriminant
scores and bootstrap resampling. We provide more insight on these criteria, comparing
them with a likelihood-based alternative and using different resampling schemes.
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1 Quadratic scoring, likelihood-based scoring, and resampling

Selecting an optimal clustering solution is not an easy task (von Luxburg et al.,
2012). Recently, in Coraggio & Coretto, 2023, we proposed a novel validation
index aimed at selecting clustering solutions in cases where clusters can be
expected to have elliptic-symmetric shapes, or to be separable by quadratic
boundaries.

Let Xn indicate sample data, and G (m) =
{

G(m)
k , k = 1, . . . ,Km

}
be a clus-

tering solution, obtained running clustering method m ∈ M . We assume that
G (m) can be meaningfully described by Km triplets θθθ(m) =

{
θθθ(m)

k , k = 1, . . . ,Km

}
,

each collecting unique elements of (i) πk, the expected fraction of points be-
longing to the k-th group; (ii) µµµk ∈Rp, the k-th cluster’s center; (iii) ΣΣΣk ∈Rp×p

a positive definite scatter matrix. For a point xxx and a triplet θθθk, we define the
quadratic score (inspired to Quadratic Discriminant Analysis; e.g., see Hastie
et al., 2009) of point xxx for the k-th cluster as

qs(x,θθθk) = log(πk)−
1
2

log(det(ΣΣΣk))−
1
2
(xxx−µµµk)

TΣΣΣ−1
k (xxx−µµµk); (1)

it can be seen as a measure of how well point xxx is accommodated into cluster
k. The hard (QH) and (QS) smooth scores are based on (1), and are essentially
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Algorithm 1 Bootstrap likelihood-based scoring
input: observed sample Xn (with ecdf Fn), α ∈ (0,1); clustering method m ∈ M ; integers B > 0
output: bootstrap likelihood-based scoring for method m: L̃(m)

n .
(to ease notation, dependence on m is dropped and reintroduced in step 3)
for b ∈ {1, . . . ,B} do

(step 1.1) X(b)
n ← non-parametric bootstrap resample from Xn (sample of size n from Fn)

(step 1.2) θ̂θθ(b)n ← triplets of parameters from clustering solution m fitted on X(b)
n

(step 1.3) S(b)n ← l(θ̂θθ(b)n ;Xn) (score solution on Xn)
end for
(step 2) W̃n ← 1

B ∑B
b=1 S(b)n R(b)

n ←
√

n
(

S(b)n −W̃n

)

(step 3) Compute (α/2)-level and (1−α/2)-level empirical quantiles:

L̃(m)
n ← inf

t

{
t :

1
B

B

∑
b=1

I
{

R∗(b)
n ≤ t

}
≥ α

2

}
; Ũ (m)

n ← inf
t

{
t :

1
B

B

∑
b=1

I
{

R∗(b)
n ≤ t

}
≥ 1− α

2

}

weighted averages of the quadratic score (see Coraggio & Coretto, 2023 for
details). The quadratic score (1) is strongly connected to likelihood theory, and
it is easy to show that it is proportional to the Gaussian density function. Thus,
as a natural alternative to the scoring criteria we use the following likelihood
function

l(θθθ(m); Xn) =
1
n ∑

xxx∈Xn

log

(
K(m)

∑
k=1

π(m)
k φ(xxx,θθθ(m)

k )

)
, (2)

where φ(xxx,θθθ(m)
k ) is the density function of a multi-variate Gaussian distribution

with mean µµµk and covariance ΣΣΣk.
Choosing the solution that maximizes (2) may give poor results: since the

sample data Xn is used both to estimate θθθ(m) and for scoring, overly-complex
solutions may be selected due to overoptimism in the evaluation process. Thus,
we use the same resampling scheme used for the BQH and BQS scores, pro-
posed in Coraggio & Coretto, 2023, that is to estimate clustering solutions on
non-parametric bootstrap resamples (Efron, 1979) from Xn, while using the
full data to evaluate the score. The procedure is reviewed in Algorithm 1 for
the likelihood-based scoring criterion.

2 Empirical analysis

The experimental analysis is a scaled-down version of that in Coraggio &
Coretto, 2023, using the Pentagon5, T510D and Uniform simulated data sets.
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Table 1: Selected solution by selection criteria (left-most column). Each sub-
table shows results from a data set: the first column shows the selected solu-
tion, and the second column reports its ARI, computed against true classes.

Criterion

QH
QS
LK

CVQH
CVQS
CVLK

BQH
BQS
BLK

(b) Pentagon5

Selected m ARI

M, K=3, VVV 0.86
M, K=3, VVV 0.86
O, K=10, γ=103 0.44
M, K=3, EVE 0.86
M, K=3, EVE 0.86
M, K=5, EVI 0.86
M, K=3, EVE 0.86
M, K=3, EVE 0.86
O, K=5, γ=1 0.85

(c) T510D

Selected m ARI

O, K=10, γ=104 0.51
O, K=10, γ=104 0.51
O, K=10, γ=104 0.51
O, K=6, γ=1 0.73
O, K=5, γ=1 0.97
O, K=8, γ=1 0.60
O, K=8, γ=5 0.57
O, K=5, γ=5 0.98
O, K=8, γ=5 0.57

(d) Uniform

Selected m ARI

O, K=10, γ=103 0
M, K=8, VVV 0
O, K=10, γ=103 0
O, K=5, γ=102 0
M, K=1, EEI 1
M, K=7, VEE 0
O, K=9, γ=104 0
M, K=1, EEI 1
M, K=10, VVI 0

Since likelihood-based scoring is only justified for model-based clustering, M
includes: (i) 140 Gaussian mixture models with covariance matrices restric-
tions (Banfield & Raftery, 1993), implemented with the Mclust (M) software
(Scrucca et al., 2016; setting K = 1, . . . ,10, and 14 covariance models); (ii) 180
Gaussian mixture models with eigen-ratio contraints (ERC; Ingrassia, 2004),
implemented with Otrimle (O) software (Coretto & Hennig, 2017, Coretto &
Hennig, 2021; setting K ∈ {1, . . . ,10}, ERC γ ∈

{
1,5,10,102,103,104}, and

3 initialization methods). The criteria compared to select optimal solutions are
as follows. QH, QS, and LK: clustering solutions are estimated and scored
using the full data, Xn; CVQH, CVQS, CVLK: clustering solutions are es-
timated on a “train set” and scored on a non-overlapping “test set”, using a
10-fold cross-validation scheme, as in Smyth, 2000. BQH, BQS, BLK: clus-
tering solution are estimated and scored according to Algorithm 1, selecting
the method m maximizing L̃(m)

n . For each criterion, the selected solutions are
evaluated against the true class labels, reporting the achieved Adjusted Rand
Index (ARI, Hubert & Arabie, 1985).

Results are presented in Table 1. The comparison gives a better under-
standing on the mechanism that lies behind the effectiveness of the BQH and
BQS criteria. First, notice that all criteria where solutions are estimated and
scored on the full data (QH, QS, LK) always select overly-complex solutions.
The extra penalization of the smooth score on overlapping clusters is key to
select better solutions in more complicated settings (T510D and Uniform). Fi-
nally, the bootstrap scheme improves on the cross-validation. Overall, both the
quadratic scores, QH and QS, and the resampling scheme in Algorithm 1 seem



401

equally important to consistently achieve good results.

3 Conclusion

In this paper, we run an empirical comparison of the BQH and BQS procedures
from Coraggio & Coretto, 2023 with a likelihood-based alternative, using dif-
ferent resampling schemes. Our experiments provide new insights on the cri-
teria, showing that both the bootstrap resampling scheme and the quadratic
scores contribute equally to the procedure: (i) the penalization for clusters’
overlap from the quadratic scores allows achieving better results in cases where
clusters are not well separated; (ii) the bootstrap resampling scheme allows to
effectively take into account clustering methods’ variability, better than cross-
validation would (likely better suited for prediction settings).
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ABSTRACT: This contribution presents a classification strategy, based on widely avail-
able statistical tools, for detecting time series that have changed flow regime in recent
years. The results from the analysis of 221 time series of unregulated streamflows in
the United States is discussed.
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1 Introduction

The climate change often affects the variability and persistence of river dis-
charges that may show an alterated balance between snow and rainfall and an
intensification of extreme hydrological events. Such climate-induced hydro-
logic changes may have relevant consequences on the freshwater ecosystem
(Dhungel et al. , 2016). The search of simple but effective tools for river
regime classification is still a topic of interest in order to investigate variations
in flow regimes and evaluate future climate impact (Yang & Olivera, 2023). In
this article, we present a procedure for classifying streamflow time series ac-
cording to their underlying dynamic structures. We illustrate our approach an-
alyzing streamflow data from 221 unregulated catchments in the United States
(Newman & al., 2015).

2 Methods

Streamflow time series are typically characterized by a marked seasonal pat-
tern, due to the alternating of wet and dry periods, and a persistent or long term
component. The seasonality often appears as a deterministic component in the
spectrum. This makes the time series unsuitable for stochastic modelling, be-
cause the marked seasonal pattern obscures the other dynamic components. At
this stage, we assume that the effect of data skewness, calendar effects, out-
liers and missing value have already been removed by preliminary analysis



403

and transformations and that the time series Wt has zero mean. Thus, Wt is
described by the harmonic regression model:

Wt = ∑[s/2]
j=1 [αw j sin(2π jt/s)+βw j cos(2π jt/s)]+Zt (1)

where s denotes the seasonal period, and Zt follows a stationary Autoregressive
model, AR(p):

ϕ(B)Zt = at , (2)

where at is a Gaussian White Noise (WN) process with constant variance
σ2

aw. It is well known that any process with an absolutely continuous spec-
trum can be adequately approximated by an Autoregressive model, then (2)
describes both short and long memory stationary components. The order p
can be selected by BIC criterion, so that parsimonious models are preferred.
Thus, the time series Wt is characterized by the coefficients estimated by GLS:
δ̂w = (α̂w1, ..., α̂wk, β̂w1, ..., β̂wk)′ and ϕ̂w = (ϕ̂w1, ..., ϕ̂wp)′.

Given two independent time series Wt and Yt , the dissimilarity will be mea-
sured by comparing the seasonal and non-seasonal coefficients separately be-
cause, as already mentioned, the two components (seasonality and inertia) have
a very different weight in determining the dynamics of the series.

Seasonal components are compared by evaluating the Mahalanobis dis-
tance: Mwy = (δ̂w − δ̂y)′(σ2

awΩw + σ2
ayΩy)−1(δ̂w − δ̂y), where σ2

a•Ω• is the
covariance matrix of δ̂•. The dissimilarity between the residual components
is measured by means of the AR metric (Piccolo, 1990; Corduas & Piccolo,
2008): Dwy =

√
∑∞

j=1 (ϕw j −ϕy j)
2.

Then, the corresponding distance matrices M and D are objects of a clus-
tering algorithm in order to identify groups of time series having similar sea-
sonal pattern and different level of inertia. Here, we use the complete linkage
method because it does not require the preliminary specification of the cluster
number and produces compact clusters.

3 Results

The analysis has been conducted on 221 time series of mean daily discharge
(feet3/sec) of unregulated streamflows in the United States (available from
the US Geological Survey at https://waterdata.usgs.gov/nwis/). Two non over-
lapping reference periods have been considered: from 1930.10.01 (or later, de-
pending on data availability) to 1974.09.30 and from 2000.10.01 to 2021.09.30.
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The complete link clustering of the Mahalanobis distance matrices, M ,
evaluated in the two reference periods, leads to the identification of six clusters.

Figure 1: Average daily discharge of clustered time series (1st period-left pan-
els; 2nd period-right panels)

In particular, the clusters describe: strong fall/spring regime (G1: mostly
in the North Atlantic and Pacific NW coast); intermittent winter/spring regime
(G2: mid Atlantic coast and central valleys); intermittent regime (G3: Gulf
coast); weak winter regime (G4: upper Great lakes and Northern Great Planes);
melt regimes (G5: mostly in the Rocky mountain and Northern Great planes);
strong winter regime (G6: mostly in the NW coast). Fig.1 illustrates the aver-
age daily discharge of the series belonging to each cluster in the two reference
periods. The fundamental features of the seasonal patterns are rather stable in
the two periods, but a number of series (33%) have changed their class mem-
berships. Changes are due to various factors: the anticipation of the seasonal
peak due to early snow-melt, the increase of the winter rainfall, the increase of
dry periods and flashy peaks. Moreover, the analysis of residual components
by means of the AR metric identifies three clusters of series with increasing
level of inertia (low, moderate, high). The parametric spectral densities of the
cluster centroids help to define these level of inertia. However, the long term
dynamics does not change remarkably in the two periods. This may be due to
the fact that the residual components are heavily affected by specific physio-
characteristics of the basins (for example, the slope).

At the end of the procedure, each time series is characterized by two labels
specifying the seasonal regime and the level of inertia. These features can be
summarized in a two-way table. In the period 2000-2021, there are 13 clusters
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(Table 1) and most rivers show an intermittent regime with peaks in winter
or spring and a low/medium level of inertia. The intermittent regime gather
numerous series that have changed their class memberships in recent years.

Table 1: Final classification for the dataset observed the period 2000-2021

Seasonality Inertia
high medium low

strong fall/spring 2 17 6
intermittent winter/spring 0 72 61

intermittent 0 6 6
weak winter 0 10 5
snow-melt 0 15 5

strong winter 0 15 1

4 Final remarks

The results that we have achieved using widely applicable statistical tools pro-
vide a useful basis for further discussion about the relationships of streamflow
regimes with physiographic and climate indices, and for determining the fu-
ture regime changes according to simulated scenarios from models driven by
climate data.

References

CORDUAS, M., & PICCOLO, D. 2008. Time series clustering and classi-
fication by the autoregressive metric. Computational Statistics & Data
Analysis, 52, 1860–1872.

DHUNGEL, S., TARBOTON, D.G., JIN, J., & HAWKINS, C.P. 2016. Potential
effects of climate change on ecologically relevant streamflow regimes.
River Research and Applications, 32, 1827–1840.

NEWMAN, A.J., & AL. 2015. Development of a large-sample watershed-scale
hydrometeorological dataset for the contiguous USA: dataset character-
istics and assessment of regional variability in hydrologic model perfor-
mance. Hydrology and Earth System Sciences, 19, 209–223.

PICCOLO, D. 1990. A distance measure for classifying ARIMA models. Jour-
nal of time series analysis, 11, 153–164.

YANG, M., & OLIVERA, F. 2023. Classification of watersheds in the conter-
minous United States using shape-based time-series clustering and Ran-
dom Forests. Journal of Hydrology, 620, 129409.



406

MODAL CLUSTERING FOR CATEGORICAL DATA
Noemi Corsini 1 and Giovanna Menardi1

1 Department of Statistical Sciences, University of Padova,
(e-mail: noemi.corsini@phd.unipd.it, menardi@stat.unipd.it)

ABSTRACT: Despite the ill-posedness of the clustering task, in the continuous set-
ting a broad consensus is overall acknowledged in defining the concept of cluster.
Conversely, a general notion of cluster remains controversial in the presence of cat-
egorical data. We propose a novel notion of cluster hinging on the twofold concept
of high frequency and association between variables. The former concept, in fact,
complies with the cluster notion described by the modal formulation of the clustering
problem, which we take advantage of to borrow some operational tools to propose an
operational procedure.

KEYWORDS: association, contingency table, graph

1 Introduction

The importance of clustering in statistics has never been questioned over the
years, thanks to the many fields in which it finds relevant applications. How-
ever, more than to its wide applicability, the proliferation of a voluminous
amount of literature on this topic is perhaps due to the ill-posedness of the
problem, which is inherent with its unsupervised nature. In fact, when numer-
ical data are at hand, a general agreement is met across alternative notions of
cluster, which collectively fall under the heading of groups of similar subjects.
Even when more sophisticated density-based cluster formulations are consid-
ered, indeed, the underlying notion of cluster implies the observations to be
somewhat close to each other.

Conversely, this does not apply to categorical data. While, in principle, a
natural clustering gathers subjects within the observed cross-categories of the
variables, such description turns out to lack parsimony when either the number
of variable and/or the number of categories grows. On the other hand, the
lack of a total order among categories makes somewhat controversial even the
notion of distance, and increases the arbitrariness in the subsequent definition
of cluster, which, in the literature about clustering categorical data, is usually
left unspecified.
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variables. Even in the lack of a cluster definition, we feel highly shareable
to acknowledge that the left panel, where variables are independent, identifies
a configuration without clusters (or formed by 12 clusters, as the number of
cross-categories); on the other hand, the right panel, characterized by a strong
association pattern between the two variables, aggregattes the subjects in three
clusters. This intuition leads us to build a novel notion of cluster hinging on
the twofold concept of high frequency and association between variables, i.e.
groups arise as highly populated (aggregations of) cross-categories of vari-
ables leading a large contribution of mutual information. The former concept,
in faact, complies with the cluster notion described by the raametric or
modal formulation of the clustering problem (see Menardi, 2016, for a review),
which we shall use to borrow some operational tools to identify groups. Note
that a similar idea is implicitly acknowledged by one of the most widespread
approaches to clustering categorical data, i.e. the k−modes (Huang, 1998).

2 Method

According to the nonparametric formulation of the clustering problem, groups
are intended as the domains of attraction of the modes of the density under-
lying data. In the continuous setting, such regions are operationally identified
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either as the set of points whose direction of the steepest gradient ascent path
converges to the same mode, or as connected sets with density above a thresh-
old.

In the categorical setting, defining both a density or its gradient is pre-
cluded and, at the same time, there is no obvious method to define the con-
nectedness of a region. Nevertheless, we shall define a procedure that jointly
extends both these ideas, if not formally, at least conceptually. To this aim, we
build a directed weighted graph where each node represents a cross-category.
The idea of steepest gradient ascent path is translated into a sequence of links
between nodes driving in the direction of the node with the locally highest
(estimated) probability. On the other hand, the connectedness of a region, in-
tended as a set cross-categories, is evaluated by the weight of the links.

Consider again the example in Figure 1: two nodes identified by the cross-
categories (Ar,Bc) and (As,Bc) shall be considered as highly connected not
only because they share the same level for variable B but also when, given that
B = Bc, both Ar and As become more likely, that is, when

P(Ar|Bc)
P(Ar)

and
P(As|Bc)

P(As)
(1)

are high. This results in providing the link with a weight set to the minimum
between the probabilities (1), or, for example, to their mean, a choice selected
hereafter to avoid ties. The direction of the link will point toward the maximum
between the two probabilities. In fact, note that

P(Ar|Bc)
P(Ar)

<
P(As|Bc)

P(As)
⇔ P(Ar,Bc)

P(Ar)P(Bc)
<

P(As,Bc)

P(As)P(Bc)
,

that is, the path of each node moves toward the direction where the ratio be-
tween the joint probability of the cell and the expected probability under the
hypothesis of independence is the maximum.

With this toolkit at hand, clusters can be formed as high density upper-level
sets or, at the same time, as domains of attractions of the density modes, where
the concept of density is here intended as a measure of how each cross-category
occurs more frequently than it would do if the variables were independent. The
outlined ideas easily extend to an arbitrary number of variables.

3 Application

Figure 2 outlines a synthetic illustrative example that cross-classifies 460 in-
dividuals according to their religion and geographic area of origin. The two
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Europe 85 4 1
America 110 2 3
Africa 20 30 4
Asia-Pacific 1 120 80
Europa 42.3 30.5 17.2
America 54.0 39.0 22.0
Africa 25.4 18.3 10.3
Asia-Pacific 94.4 68.2 38.5
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variables exhibit a high dependency structure, with certain cross categories
presenting a higher frequency than expected under the assumption of indepen-
dence. Wee built the graph according to the presented procedure, by estimating
the involved joint probabilities by their empirical counterpart and the expected
ones under the hypothesis of independence, by a suitable log-linear model. The
graph, displayed on the right side of Figure 2 reports the direction addressed by
the nodes, along with the intensity of the connections between them (shaded
colors describe outgoing links whose weight is not the highest). While, for
example, the cross-categories in the first column share a common level for the
religion variable, they are not connected with the same strength, because be-
ing Christian increases the probability of coming from America and Europe,
whereas the same does not apply to the Asia-Pacific region. By following the
path of each node, two clusters are revealed, attracted by subjects of Asiatic
origin of Eastern religions and by Christians from America.
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ABSTRACT: Least squares regression is highly unreliable when a strong collinearity
structure is present among the predictors. Among several proposals introduced in the
literature, principal component regression is a straightforward method to overcome
the problem, even if it introduces a slight bias in the parameter estimation. This paper
presents a simulation study to evaluate the use of principal component regression in
the context of quantile regression and, focusing on the variability of the estimates and
the model’s prediction ability.

KEYWORDS: mutlicollinearity, principal component regression, quantile regression.

1 Introduction

In classical multiple linear regression applications, multicollinearity occurs
very often, i.e. whenever two or more predictors are strongly correlated with
each other. Such an issue can affect least-squares (LS) regression coefficients,
their standard deviation, and consequently the associated t-tests, fitted values,
and predictions.
Although multicollinearity has been extensively covered in the linear regres-
sion literature (Weisberg, 2005, Martens & Næs, 1992), little attention has
been devoted to its effects in the context of quantile regression (QR) (Koenker
& Hallock, 2001, Davino et al., 2013, Furno & Vistocco, 2018). Possible so-
lutions to the problem have been proposed from the ridge regression viewpoint
(Bager, 2018), or focusing on variable selection techniques (Zaikarina et al.,
2016), for instance. However, an alternative approach addresses the problem
of multicollinearity from a different perspective: the entire set of variables is
preserved but replaced by some synthetic variables defined as principal com-
ponents. This alternative approach is known as regression on latent variables
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(James et al., 2013), the variants of which differ in how these latent variables
are obtained. Among these, the best-known method is the principal compo-
nent regression (PCR)(Massy, 1965), from which the technique of quantile on
principal component regression (QPCR) (Davino et al., (2022)) originated.

The contribution of this article is to investigate the multicollinearity is-
sue in the QR by evaluating its effects and deepening the study of the QPCR
method.

2 Methods

In formal notation, the multiple linear regression model can be expressed as:

y = Xβββ+ e, (1)

where y is the (n×1) vector of the dependent variable, X is a (n×K) fixed ma-
trix representing the independent variables, βββ is a (K ×1) vector of unknown
regression coefficients, and e is a (n× 1) vector of errors assumed to be nor-
mally distributed, with E(e) = 0, and E(ee′) = σ2In. In the following, without
loss of generality, we assume that X and y are centered columnwise. The LS
estimator is

β̂ββ = (X′X)−1X′y. (2)

The covariance matrix of β̂ββ is equal to

cov(β̂ββ) = σ2(X′X)−1, (3)

and can be also formulated in terms of the singular value decomposition of the
X′X matrix as

cov(β̂ββ) = σ2
K

∑
k=1

pk(1/λk)p′
k, (4)

where p and λ are the eigenvectors and the eigenvalues of X′X, respectively
(Næs & Mevik, 2001). Equation (4) highlights how, in presence of collinearity
among the predictors, i.e. when some eigenvalues are very small, the variance
of the regression coefficients increases.

The LS predictor ŷ is unbiased, and the related Mean Squared Error (MSE),
written using the eigenvector and eigenvalue decomposition of X′X, is

MSE(ŷ) = σ2/N +σ2
K

∑
k=1

t2
k /λk +σ2, (5)
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where tk = xxx′pk is the score of xxx along eigenvector k. Equation (5) shows
that the MSE depends not only on the magnitude of the eigenvalue but also
on the t-score, i.e., on how much the new observations fall within the range of
variability of the observed data along the different axes.

PCR finds some linear combinations of the original variables and use them
as regressors to predict y. Specifically, principal components analysis is ap-
plied to the matrix of predictors X to extract the A most dominating principal
components. The PCR model structure is given by the following two equations

X = TP′+E, (6)
y = Tq+ f,

where T is called scores matrix and collects the A dimensions responsible for
the systematic variation in X, P and q are called loadings and describe how
the variables in T are related to the original variables in X and y, respectively.
The PCR estimator is no longer unbiased since only the main dimensions are
retained, while the less relevant ones are discarded. The MSE of the predictor
ŷPCR is

MSE(ŷ) = σ2/N +σ2
A

∑
k=1

t2
k /λk +

(
−

K

∑
k=A+1

(tk/
√

λk)αk

)2

+σ2. (7)

It has been empirically demonstrated (Næs & Mevik, 2001) that in situations of
collinearity among the predictors, the PCR predictor performs better than the
LS predictor in terms of MSE. Equation (7) suggests that a more considerable
contribution of the variance along the eigenvectors with small eigenvalues (a=
A+1, . . . ,K) for the LS predictor is replaced in the case of the PCR predictor
by a more negligible bias contribution.

The extension of the PCR to the context of the QR is straightforward, as
shown in Davino et al., (2022). The model structure for the so-called QPCR is
given by the following two equations:

X = TP′+E (8)
Qθ (ŷ|T) = Tβ̂(θ)

where Qθ(.|.) is the conditional quantile function for the θ–th conditional
quantile with 0 < θ < 1. It is worth noting that QPCR can produce the same
numerical and graphical outputs as PCR, for each selected θ.
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3 Simulation study

The simulation study aims to investigate the QPCR properties assessing:

• the variability of the regression coefficients in terms of MSE, given that
the PCR estimator is biased;

• the prediction ability of the model both in the case of new cases within
the range of the sampled data (i.e. to interpolate) and in the case of new
data outside such a range (i.e. to extrapolate).
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ABSTRACT: This paper proposes an original methodology for the analysis of socio-
economic residential segregation. The strategy involves employing areal interpolation
methods to create population grids, applying a compositional data approach to quan-
tify categorical distributions, and utilising principal component analysis to define an
index of socio-economic class composition for each cell in the study area. By combin-
ing index values with spatial autocorrelation tools, it is possible to identify and map
segregated areas. To test our method, we rely on the latest UK census data (2021) for
the Liverpool metropolitan area, using social groups defined according to the National
Statistics Socio-economic Classification.

KEYWORDS: residential segregation analysis, grid cells, compositional data analysis,
PCA, spatial analysis

1 Introduction

Residential segregation refers to the spatial separation of social groups within
urban areas based on factors such as socio-economic status or ethnicity. While
not inherently negative, segregation can lead to the formation of urban areas
with distinct social compositions and unequal distribution of resources and ser-
vices. These factors shape the opportunity/constraint structure of individuals,
perpetuating and transmitting social inequalities (Musterd, 2020). Over the
years, different indices have been proposed to measure the phenomenon ac-
cording to its dimensions. However, recent re-conceptualisations and more ef-
fective measures have introduced new analysis approaches. Within this frame-
work, there is particular interest in developing indices that incorporate the spa-
tial dimension as they are better able to capture population patterns and the
variability of segregation across urban space. Segregation measures typically
rely on categorical data provided by national statistical agencies and reported



415

for different spatial units, such as census tracts. As a result, segregation stud-
ies often use ecological or aggregated units for analysis. Summary statistics
describing these spatial units often involve compositional data with a fixed-
sum constraint. However, applying standard statistical methods designed for
unconstrained data to compositional data, which are constrained to a simplex
can introduce bias (Aitchison, 1986). Additionally, the use of aggregated units
poses challenges in spatial analysis due to their arbitrary scale of aggrega-
tion and delineation of boundaries, which may not align with meaningful di-
visions relevant to the studied phenomenon. This issue is commonly known
as the Modifiable Areal Unit Problem (MAUP) (Openshaw, 1984). Moreover,
employing aggregated units with irregular and changing geometries further
complicates the comparison of urban areas over time or synchronously. To
overcome these challenges, the next section presents a novel methodology for
analysing socio-economic segregation, addressing the measurement complex-
ities, and ensuring comparability across urban areas.

2 Methodology

The methodological proposal is based on an interdisciplinary approach, incor-
porating statistical, sociological, and geographical knowledge. The first phase
involves using areal interpolation methods, commonly employed in quantita-
tive geography to improve the estimation of population distribution across a
territory. Starting with census aggregated units, a dasymetric binary interpola-
tion procedure (Langford, 2013) using satellite data on land use and land cover
is applied to enhance the estimation process. This procedure defines a new set
of regular hexagonal grids with higher spatial resolution. The use of grid cells
allows for diachronic and/or synchronic comparative analyses between urban
areas that report different administrative subdivisions. Utilising grid cells in-
stead of standard units provides a flexible tool to effectively address the MAUP,
as the spatial resolution of the cells can be easily modified according to the re-
search objectives. After estimating population grid data, a compositional data
analysis strategy, as defined by Aitchison (1986), is employed in the second
phase. Population data categorical distributions are quantified by performing
the clr-logratio transformation, enabling a subsequent correlation-based statis-
tical analysis. Next, the strategy for measuring socio-economic segregation
is implemented in the third phase. A weighted principal component analysis
(PCA) (Greenacre, 2018) is performed on the clr-coordinates to synthesise the
distributions of socio-economic classes into a single factor while reducing the
influence of sparsely populated grid cells on the results. Subsequently, the so-
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cioeconomic composition index is defined using the scores derived from the
first component. For ease of interpretation, the scores are normalised to values
ranging from 0 to 100. In the fourth phase, to detect the spatial structure of the
index, a spatial autocorrelation analysis is conducted using the Moran index
(Moran, 1948). Index values are used as input data, and a different definition
of proximity is incorporated in the spatial weight matrix to define the spatial
relationships between areal units. This criterion, based on temporal distances,
utilises the median time taken by an individual to travel from one cell to an-
other using four different modes of transportation (walking, biking, driving,
and transit). This approach may offer a more realistic representation of the
degree of connection between areal units and the potential spatial interaction
between social groups compared to criteria based on adjacency and geographi-
cal distance. Furthermore, the Moran index can consider the degree of cluster-
ing of only one population group at a time, but this limitation is overcome by
using an index that summarises the distributions of all socio-economic groups.
To assess the intensity of the spatial structure of the socio-economic composi-
tion index, the global Moran index is first calculated using different temporal
distances as thresholds. Then, the local Moran index (Anselin, 1995) is ap-
plied to the index by selecting the specification of the spatial weight matrix
that maximises the autocorrelation value.

3 Results

The proposal was applied to the metropolitan area of Liverpool. Data were col-
lected from various sources, including the UK Census data for the year 2021,
the UK Corine land cover dataset for the year 2018, the Traveline National
Dataset (TNDS), and the Open Street Map data. The methodology was im-
plemented in R. Figure 1 displays the local Moran map of the socio-economic
composition index, illustrating the spatial patterns of socio-economic groups
defined according to the UK National Statistics Socio-economic Classification
in the study area. Based on significant local Moran values and PCA load-
ings, cells were classified into different categories: HH (High-High) spatial
clusters indicate higher socio-economic class segregation, LL (Low-Low) spa-
tial clusters indicate lower socio-economic class segregation, HL (High-Low)
spatial outliers represent high index values surrounded by low index values,
and LH (Low-High) spatial outliers represent low index values surrounded by
high index values. Cells with no significant local Moran values are considered
non-segregated areas.
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Local Moran clusters

High−High (207)
High−Low (2)
Low−Low (270)
Not significant (1426)
No phenomenon occurence

Municipality borders
Urban core
Liverpool city

Figure 1. Local Moran map of the socio-economic composition index. Liverpool,
2021
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ABSTRACT: DD-classifiers have been widely used to perform classification tasks
given that they are non-parametric and flexible and can also be applied in high-dimensional
spaces when a suitable notion of depth is adopted. The aim of DD-classifiers is to as-
sign new unlabeled observations to the labeled groups based on their depth values
with respect to each group. Visualizing the cases being classified can be very in-
teresting. It can reveal a clue about the data and the classification method as well,
e.g. the causes for which some observations are misclassified or whether the classifier
is appropriate to the data or not, which can be reflected by the posterior probability
of the alternative class. For these reasons, rather than focusing on the mechanism
of the DD-classification procedure itself, we investigate how the silhouette plot, the
class map and the quasi-residual plot can be adopted to visualize the results of the DD-
classifiers. Several real data examples are considered in order to illustrate the potential
of these visualization tools. We also use the average silhouette width to compare the
results of DD-classifiers exploiting different discriminant rules when associated with
different depths for each data set.
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ABSTRACT: We show how marginal likelihood thresholding can be applied in the
context of multiple hypothesis testing, proposing a rule to select the tuning parameter
involved. For detecting the positions of nonconsensus amino acids in patients suffer-
ing from two different HIV variants, we use a logistic regression framework and see
that our results are in line with those from standard and advanced procedures control-
ling the false discovery rate, i.e. the proportion of incorrectly rejected null hypotheses.
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1 Setup and Methods

Let Y be a p × 1 random vector with probability mass or density function
f (y;θ) indexed by the parameter θ = (θ1, . . . ,θp)⊤, which is sparse in the
sense that a small number p∗ ≪ p of its elements are different from zero.
Suppose the full f (y;θ) is difficult to specify or compute, but we can identify
the p conditional univariate marginal distributions of the single Yjs, f j(y|x;θ j)
( j = 1, . . . , p) where x is a k-vector of covariates. Specifically, we assume a
generalized linear model µ j = E(Yj) = g−1(α j + θ jx) with link function g(·)
and dispersion parameter φ > 0.

Given independent observations (Y (i),x(i)) (i = 1, . . . ,n), the composite
marginal likelihood (CML) estimator θ̃ (Varin et al., 2011) maximizes

ℓ(θ;Y (1), . . . ,Y (n)) =
p

∑
j=1

w jℓ j(θ j;Y (1), . . . ,Y (n)), (1)

where ℓ j(θ j;Y (1), . . . ,Y (n)) = ∑n
i=1 log f j(Y (i)|x(i);θ j) is the jth marginal log-

likelihood and w = (w1, . . . ,wp)⊤ is the design vector of weights that deter-
mines which margins are included in (1). Finally, we assume that p grows
with the sample size n, but at a slower rate.
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1.1 Marginal likelihood thresholding

We review here the method presented in Di Caterina & Ferrari, 2022, for
the current setting. Since the marginal log-likelihoods depend on separate
parameters, we have θ̃ j =

{
θ j : ∑n

i=1 u j(θ j;Y (i)) = 0
}

( j = 1, . . . , p) where
u j(θ j;y) = ∂ℓ j(θ j;y)/∂θ j denotes the jth marginal score. Sparsity in the fi-
nal estimator θ̂ is induced via the marginal likelihood thresholding (MLT)

θ̂ j =

{
θ̃ j if ŵ j ̸= 0
0 if ŵ j = 0 ( j = 1, . . . , p) ,

where ŵ = (ŵ1, . . . , ŵp)⊤ is a sparse design vector, selected by minimizing for
some λ> 0 the convex criterion that balances statistical efficiency and sparsity:

d̂λ(w) =
1
2

w⊤Ĉw−w⊤diag(Ĉ)+
λ
n

p

∑
j=1

|w j|
θ̃2

j
, (2)

where Ĉ is the sample covariance matrix of the marginal scores and, if g(·)
takes canonical form, has entries Ĉ jk =∑n

i=1(Y
(i)
j − µ̃(i)j )(Y (i)

k − µ̃(i)k )(x(i))2/(φ2n)

with µ̃(i)j = g−1(α̂ j + θ̃ jx(i)).

1.2 Selection of the tuning parameter

The tuning parameter λ is crucial in determining the proportion of nonzero
elements in the final MLT estimator θ̂. From the Karush-Kuhn-Tucker (KKT)
first-order conditions for the minimization of (2), we find that θ̂ j is set to zero
if the corresponding rescaled z-statistic is smaller than

√
λ. This condition is

an acceptance region for the null hypothesis θ j = 0 and suggests that λ may be
selected by some form of error control for multiple tests based on the family of
hypotheses Hλ = {H j

0 : θ j = 0 vs H j
a : θ j ̸= 0, j ∈ Âλ}, where Âλ = { j : ŵ j ̸=

0}. Rejecting all the hypotheses in Hλ indicates that the selected parameters
are probably useful and a larger model could be considered by decreasing λ.

By this rationale, using the asymptotic normality of the z-statistic for θ j,
Slutsky’s Theorem and the KKT conditions, if the false discovery rate (FDR)
is set equal to α ∈ (0,1) we obtain the following selection rule for λ:

λ̂ = inf

{
λ :

θ̃2
j

SE2
j
> qα, for all j ∈ Âλ

}
, (3)

where SE j = φ{∑n
i=1(Y

(i)
j − µ̃ j)x(i)}−1 if g(·) is canonical and qα is the upper

α-quantile of the χ2
1 distribution.
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2 Analysis of HIV data

We analyze data from Gilbert, 2005, to investigate differences between two
variants of HIV. The gag p24 amino acid sequence with p = 118 positions
was obtained from n = 146 individuals, half infected with subtype C (group
1, n1 = 73) and half infected with subtype B (group 2, n2 = 73). For each jth
position, the number of subjects with a nonconsesus amino acid was recorded
in groups 1 and 2. Our aim is to detect the differentially polymorphic positions,
where the probability of a nonconsensus amino acid differs in the two groups.

Both Gilbert, 2005, and Chen et al., 2018, §5, assumed the counts per
position were distributed as Bin(τ jg,ng) in the gth group (g = 1,2), com-
puted Fisher’s exact statistics to test the null hypotheses H j

0 : τ j1 = τ j2 for
j = 1, . . . 118, and adjusted for multiple comparison. They discussed that
the Benjamini-Hochberg (BH) method (Benjamini & Hochberg, 1995), which
here finds 12 relevant positions controlling the FDR at level α = 5%, has less
power and possibly yield unreliable results in discrete settings. Because the
first 50 positions have Fisher’s exact test statistics with p-values almost surely
equal to 1, the BH procedure is expected to be extremely conservative here,
meaning to have a FDR much lower than α.

Instead, we model the presence/absence of a nonconsensus amino acid in
subject i on position j as Y (i)

j ∼ Ber(π(i) j) with π(i) j = logit−1(α j + θ jx(i)),
where x(i) is a dummy variable encoding the ith subject’s group (i = 1, . . . ,n).
We can then apply the MLT method to such logistic regression scenario using
p = 118 univariate marginal likelihoods: a nonzero estimate of the logit coef-
ficient θ j will indicate to reject the hypothesis H j

0 : θ j = 0 and so will identify
the jth position as differentially polymorphic.

Since quasi-complete separation occurs when fitting the logistic regression
in some positions, it is convenient to set the marginal θ̃ js equal to the equally
consistent bias-reduced estimates (Firth, 1993). If we choose λ̂ as described
in (3) with α = 5%, we select p̂∗ = 15 nonzero parameters corresponding to
15 differentially polymorphic positions. This is in line with what found by
Gilbert, 2005, via their modified BH procedure. Chen et al., 2018, §5, noticed
that the classical BH method applied after excluding the first 50 positions also
leads to the same conclusion. In terms of positions selected by MLT, Table 1
shows that 13 out of 15 were identified also by at least another multiple testing
procedure conducted on this data set in Gilbert, 2005, and Chen et al., 2018,
§5, controlling the FDR at level α = 5%. Note that, when the complete data
are analyzed, neither of the FDR-controlling procedures considered selects any
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Table 1. Number of positions selected via MLT classified by alternative FDR-
controlling method. A tick indicates the corresponding method also selects those posi-
tions at level α = 5%. The ∗ marks methods run after excluding the first 50 positions.

# Selected Modified adaptive adaptive
positions BH BH∗ BH BH∗ BH-Heyse∗
by MLT (Gilbert, 2005) (Chen et al., 2018)

7 " " " "
3 "
1 " " "
1 " "
1 "
2

Tot: 15

of the first 50 positions. It would then appear sensible that results did not
change once those were discarded. Yet this sort of robustness holds only for
the modified BH procedure and our proposal.
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ABSTRACT:
The phenomenon of one-inflation frequently affects the estimates of population

size when the available dare are represented by frequencies of counts. A particular
behavioral effect preventing subsequent captures after the first one may be the reason
for such an effect. We consider a Bayesian semi-parametric approach by fitting a
truncated Dirichlet process mixture model as a base tool for modeling repeated count
data and extend this class to include one–inflation. The proposed methodology is
briefly illustrated via a real data application.

KEYWORDS: capture-recapture, Dirichlet process mixture, repeated count data

1 Introduction

Consider a closed population composed of N individuals. Suppose that N is
unknown, n distinct units have been identified for a fixed amount of time and
a given unit may be identified exactly once or observed twice, three times,
or more. Under time–homogeneity, without individual covariates, the data
can be simply summarized as counts of units captured j times, j = 1,2, ...,
commonly called “repeated count data” The common parametric approach for
estimating N is to define a counting distribution for the number of captures in
the population. In the absence of any additional individual information, it is
crucial to model the unobserved heterogeneity. A well–established approach
to this end is represented by the use of mixtures of counting distributions, see,
Böhning et al. (2005).

Mixtures of Poisson distributions are a standard choice both for repeated
captures and species sampling problems but they present several issues related
to the selection of the number of components and the instability of the N es-
timator. The choice of the number of mixture components has been usually
addressed by the use of the nonparametric maximum likelihood estimation
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(NPMLE) approach (Norris & Pollock (1996)) which maximizes the likeli-
hood of an over-fitting finite mixture model. The frequentist properties of the
NPMLE approach have been discussed in Wang & Lindsay (2005) where a
penalized NPMLE estimator of N with better inferential performance is pro-
posed. Another critical issue that has been recently addressed for the N esti-
mation problem with repeated counts is that the collected data set frequently
exhibit an elevated number of individuals captured exactly once. See, for ex-
ample, Godwin & Böhning (2017). This excess of singletons is also termed as
“one–inflation”. Failing to identify and model in the analysis such a mecha-
nism implies a (possibly severe) overestimation of the total population count.

Bayesian semi-parametric approaches underlying population size estima-
tion have already been proposed. Guindani et al. (2014) handled the hetero-
geneity problem proposing a Dirichlet process mixture (DPM) of Poisson dis-
tributions for modeling gene expression sequence abundance and estimating
the number of different unique sequences. The DPM approach, as the NPMLE,
avoids to fix the number of components and, by averaging over mixtures of
different order, has the advantage of properly accounting for the clustering
process uncertainty in the final estimate of N. A DPM latent class model has
been also proposed in the context of multiple systems estimation by Manrique-
Vallier (2016) under capture heterogeneity and list dependence. In this paper,
we present an application of the DPM approach handling the presence of one
inflation with repeated count data.

2 One-inflated mixture distributions

Let Yi, i = 1, . . . ,N, be the integer-valued random variable representing the
number of times a given unit has been captured. We assume that

Yi|λi
ind∼ Poisson(λi) λi|G

iid∼ Λ Λ ∼ DP(φΛ0) (1)

where Λ ∼ DP(φΛ0) denotes a distribution generated by a Dirichlet process
with base measure φΛ0, see Guindani et al. (2014). Note that we only observe
the n individuals which are captured at least once. Let n j denote the number of
units captured j times, such that ∑ j>0 n j = n. We want to estimate the number
of uncaptured units n0, or, equivalently, N = n+n0. Considering the truncated
version of the DPM model (1) (see Ishwaran & James (2001)), Yi is a finite
mixture of Poisson distributions with mixing weights π1, . . . ,πk following a
finite stick-breaking prior, that is, π1 =V1 and

πi = (1−V1)(1−V2) · · ·(1−Vi−1)Vi i = 2, . . .k (2)
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where Vi for i = 1, . . . ,k− 1 are independent Beta(1,φ) random variables and
Vk = 1. Denote as f ( j|λi) the probability λ j

i e−λi/ j! of being captured j times
in the i–th component defined by the parameter λi and denote as θ the set of
all parameters. The truncated Poisson DPM model is defined as P(Y = j) =
f ( j|θ) = ∑k

i=1 πi f ( j|λi) for j = 0,1, . . . with the mixing weights given by (2).
Under the hypothesis of one–inflation caused by a specific behavioral ef-

fect, an individual that, without that effect, would face multiple captures, un-
der this effect will be captured just once. The hypothesis can be modeled
as follows: let B be the latent indicator variable identifying the units hav-
ing this behavior. Each individual has a marginal probability ω of belong-
ing to this subpopulation. Denote as Y ∗ the latent number of captures of a
given unit that we would observe in absence of the behavioral mechanism
and let f ∗( j|θ) = P(Y ∗ = j |θ) be its probability distribution. By assuming
P(Y = j|B = 0) = f ∗( j|θ) for all j and P(Y = j|B = 1) = f ∗(0|θ) for j = 0
and 1− f ∗(0|θ) for j = 1 the resulting distribution for Y is the one–inflated
model defined as:

P(Y = j |θ,ω) =

⎧
⎨

⎩

f ∗(0|θ) if j = 0;
(1−ω) f ∗(1|θ)+ω(1− f ∗(0|θ)) if j = 1;

(1−ω) f ∗( j|θ) if j > 1.
(3)

The one-inflated Poisson DPM model is then obtained by assuming for the
baseline distribution f ∗( j|θ) in (3) a Poisson DPM model.

3 Application

In this Section, we briefly illustrate the proposed methodology. We consider a
data set that contains counts of treatment episodes by heroin users in Bangkok,
see Godwin (2017). Upon visiting a treatment center, heroin users may find the
treatment less pleasant than expected, and decide never to return, thus giving
rise to one-inflation. Figure 1 shows the data set, the posterior distributions for
N under the truncated DPM and the one-inflated version, the posterior distri-
butions for the number of observed clusters, and the one-inflation parameters.
These posterior distributions have been obtained via MCMC methods and a
prior on the DPM parameter φ penalizing the overestimation of the number
of clusters. As expected, the one-inflated model produces lower estimates of
the population count by assigning a greater number of captures to a portion of
singletons. The estimation for N and ω under the one-inflated DPM are com-
parable to those obtained by Godwin (2017) confirming that the DPM and its
one-inflated counterpart represent valid competitors in this setting.
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ABSTRACT: In this work we investigate the thermal energy demand (TED) in urban
areas through a copula-based approach. The proposed method enables the charac-
terization of the probability law of TED under extreme weather conditions and for
specific groups of buildings. In particular, we show how building characteristics, such
as energy class and heating surface, may worsen or mitigate the impact of extreme
scenarios.

KEYWORDS: Ali-Mikhail-Haq copula, cluster analysis, conditional copula, thermal
energy demand

1 Introduction

The analysis of thermal consumption in urban areas is crucial to increase the
sustainability and efficiency of energy systems (Menapace et al., 2021) and re-
duce the impact of climate change. One major issue is the study of the complex
dependence between thermal energy demand (TED) and weather conditions.
Focusing on district heating (DH) – a heat distribution system representing a
key technology to reduce waste of energy in urban areas – Di Lascio et al.,
2020 and Di Lascio et al., 2021 analysed the temporal dynamics of TED and
its relationships with meteorological variables. In particular, they assessed the
effect of extreme values of solar radiation (SR, in W/m2) and outdoor temper-
ature (OT, in ◦C) on TED by using a conditional copula-based approach. In
addition, Di Lascio et al., 202X recently proposed a copula-based dissimilar-
ity measure to group buildings according to their TED, which turns out to be
strongly influenced by building characteristics, such as energy class, age class,
and heating surface.

In this paper, we refine the study of the impact that meteorological vari-
ables have on TED, by merging the proposals in Di Lascio et al., 2021 and Di Las-
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cio et al., 202X. Sect. 2 presents the background and the proposed methodol-
ogy, while Sect. 3 illustrates the application and discusses the results.

2 Methodology

Our proposal is to exploit conditional copula to describe the probability law of
TED (X3) given extreme scenarios (i.e. very low quantiles of SR (X1) and OT
(X2)) (Di Lascio et al., 2021), after performing a suitable cluster analysis to
identify buildings with similar TED profile, as done in Di Lascio et al., 202X.

The proposed methodology is grounded on (i) the following conditional
distribution function (see Di Lascio et al., 2021 for details)

P(X3 > x3|X1 < x1,X2 < x2) = 1−C(F3(x3)|F1(x1),F2(x2)) (1)

where C(F3(x3)|F1(x1),F2(x2)) = C(U3|U1,U2) is the conditional copula de-
fined using Bayes’ rule (Trivedi & Zimmer, 2005), and (ii) the following
copula-based spatially-weighted dissimilarity measure between TED time se-
ries at different sites (see Di Lascio et al., 202X for details)

d j j′ = c j j′
√

2(1−θ j j′) (2)

where θ j j′ ∈ [−1,1[ is the parameter of the Ali-Mikhail-Haq copula model (Ali
et al., 1978) of TED time series at sites j and j′, and c j j′ = exp(g j j′/max(G)),
∀ j ̸= j′, where G = (g j j′) is matrix of geographical distances, is the spatial
weight. The final clustering here is obtained via the hierarchical method with
complete linkage rule.

In what follows, an application of the conditional-copula approach to the
partition obtained via the clustering procedure based on Eq. (2) is illustrated.

3 Empirical analysis and discussion

We use hourly time series of TED of 41 residential users (i.e., one or more ag-
gregated buildings) in Bozen-Bolzano during two intermediate weeks in Jan-
uary 2016. We first estimate the following dynamic panel regression model

TEDit = ρ1TEDi(t−1) +ρ2TEDi(t−24) +β1SRit +β2OTit +β3OTi(t−3) +µi+εit

where i = 1, . . . ,41, t = 1, . . . ,T = 366, µi ∼ iidN(0,σ2
µ), εit ∼ iidN(0,σ2

ε),
with µi and εit independent. Secondly, the hierarchical clustering method with
complete linkage rule and dissimilarity in Eq. (2) is applied to the 41 TED
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residual time series, yielding K = 3 clusters of users (selecting K through the
average silhouette width). Fig. 1 shows the time invariant characteristics of
DH users for the final clusters. Based on the obtained partition, we model the
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Figure 1. Heating surface (left panel), age class (middle panel), energy class (right
panel) for each cluster, from Cl 1 to Cl 3.

temporal dynamics of TED aggregated by cluster through a suitable SARIMA
model, identified via the AIC and validated by checking for residual autocor-
relation (SARIMA(2,0,0)(1,1,1) with a drift for SR, SARIMA(0,1,2)(2,1,0)
for OT, and SARIMA(1,1,2)(0,1,1) for TED in the first and third cluster,
SARIMA(1,1,1)(1,1,2) for TED in the second cluster). Finally, we model
the dependence relationship between each residual series and SR and OT via
the conditional copula in Eq. (1), where a parametric copula model is chosen
among the Elliptical, the Archimedean and the Joe family (Durante & Sempi,
2015). For all the three clusters, the resulting copula model is the Student-t,
which is selected on the basis of the AIC and estimated via maximum likeli-
hood. Fig. 2 shows the behaviour of TED for extreme values (low quantiles) of
OT and SR for each identified cluster. While weather conditions have a clear
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Figure 2. Copula-based conditional probability function in Eq. (1) with (U1,U2)< 0.3
(solid line), < 0.15 (dash-dotted line), < 0.05 (dotted line), < 0.01 (dash line) for each
identified cluster: residual TED quantile (x-axis).
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impact regardless of the cluster considered, it is also evident that TED behaves
differently in the three clusters. For instance, the probability of exceeding the
80-th percentile of TED given that SR and OT are smaller than their 0.01-th
quantile is 0.671, 0.698, and 0.769 for the first, second and third cluster, re-
spectively. Moreover, the conditional probability increases more quickly as the
weather tends to a more extreme scenario for the third cluster in comparison
to the other two clusters. Indeed, the first cluster, which includes large, new
and efficient buildings, is characterized by the lowest impact of extreme events
of TED; the third cluster shows the strongest effect, including old and small
buildings, with the lowest energy performance; the second seems to be char-
acterized by an intermediate behaviour (the buildings are small, with medium
energy class and heterogeneous age).

These findings can contribute to the study of the impact of meteorological
conditions on the energy needs of buildings in the urban area, thus supporting
the efficient management and production of thermal energy.
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ABSTRACT: One of the key issues in the European Union’s environmental policy
concerns greenhouse gas emissions reduction, which is a challenge task to mitigate
climate change. In this paper we investigate the emissions of different greenhouse
gases from agriculture in the European Union countries through the innovative ag-
glomerative hierarchical percentile clustering algorithm.

KEYWORDS: agriculture, greenhouse gas emission, hierarchical percentile cluster-
ing.

1 Introduction

Clustering methods are unsupervised techniques useful to identify structure
underlying the data with the aim of gaining insights into their generating pro-
cess. Durante et al., 2021 proposed a method called Agglomerative Hierachical
Percentile Clustering (AHPC) that allows us to deal with experimental errors
and/or uncertainty affecting the observations. Hence, AHPC algorithm aims to
cluster objects represented by repeated measurements on a set of variables.

Recently, European Union (EU) established to reduce greenhouse gas (GHG)
emissions by at least 55% by 2030 compared to 1990 levels, and achieve cli-
mate neutrality by 2050. In particular, the emissions from agriculture account
for about 11% of EU-27 emissions and in 2020 were about the same as in
2005. Hence, in the coming years substantial GHG emission reductions across
all the sectors of the economy, including agriculture, are expected.

Our interest is to investigate the possible different behavior of EU countries
in GHG emissions from agriculture through the innovative AHPC. To this aim,
Sect. 2 presents the AHPC algorithm, while Sect. 3 contains the empirical
analysis and a discussion of the findings. Finally, Sect. 4 concludes the paper.
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2 The AHPC algorithm

The percentile clustering (PC) is a clustering method based on a dissimilarity
matrix computed according to the percentile approach suggested in a seminal
paper by Janowitz & Schweizer, 1989. Recently, Durante et al., 2021 have
developed the PC method in the hierarchical clustering framework and inves-
tigated its performance on both simulated and observed data.

Suppose to cluster d objects, i.e. statistical units, on which p different
variables are observed. Also assume that each object i is associated with a set
of ni repeated observations, e.g. observations over time, and thus represented
by a (ni× p)-dimensional matrix Xi. The AHPC algorithm can be summarized
as follows:

1. for each pair of objects i and j, with i ̸= j and i, j = 1, . . . ,d, i.e. for each
pair of matrices Xi and X j:
(a) compute the Euclidean distance di j

kℓ between the k-th row of Xi and
the ℓ-th row of X j for every k = 1, . . . ,ni, ℓ= 1, . . . ,n j;
(b) compute the dissimilarity pi j as the α-quantile of the di j

kℓ distances
computed at the step (a) by varying k and ℓ; α can obviously assume
value in [0,1];

2. create the (d×d)-dimensional dissimilarity matrix P= (pi j) with pii = 0
and pi j = p ji;

3. apply the classical agglomerative hierarchical clustering algorithm (Everitt
et al., 2011) choosing a linkage rule among the classical ones, e.g. single,
average and complete linkage, and using P as dissimilarity matrix.

Roughly speaking, the AHPC is a classical hierarchical clustering algo-
rithm based on a dissimilarity matrix computed through the α-percentile of the
distribution functions of Euclidean distances between each pair of considered
objects. Hence, the AHPC has interesting features. Firstly, the AHPC allows
us to exploit prior knowledge of each object that can be observed for a differ-
ent number of times, i.e. ni ̸= n j, when i ̸= j. Secondly, the possible presence
of missing values does not prevent the application of the method. Thirdly,
it should be noted that the dissimilarity matrix based on the α-percentile is
actually an ordered weighted aggregation function (see, e.g., Yager, 2000).
However, it is important to stress that considering percentiles as dissimilari-
ties only takes into consideration the ranks of the objects (see, e.g., Cena &
Gagolewski, 2020).
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3 Case study

In order to illustrate the usefulness of the AHPC method, we analyze the GHGs
emissions from agriculture. We consider the methane-CH4, carbon dioxide-
CO2 and nitrous oxide-N2O per capita emissions (expressed in CO2 equiva-
lent) for the EU countries (excluding Malta due to lack of available CO2 data)
over the period 2012-2020 (source: European Environment Agency). We stan-
dardise each variable to ease the interpretation of findings. Next, we apply the
AHPC algorithm using the complete linkage and the percentile level α = 0.75
as suggested by the Monte Carlo simulation results in Durante et al., 2021.
Ignoring the two-cluster solution that is low informative due to the presence
of a singleton cluster, i.e. Ireland, we consider the second highest value of the
Average Silhouette Width (Rousseeuw, 1987) (0.346) that suggests a partition
in five clusters.

To interpret the obtained results we consider the boxplots of each anal-
ysed GHG variable according to the obtained partition (see Fig. 1). We do not
represent the fifth cluster because it is only formed by Ireland whose average
emissions are extremely higher than those of the other EU countries for all the
considered gases (average values of CH4, CO2, and N2O are 4.632, 3.790, and
3.354, respectively). It appears that countries belonging to the second cluster
are the ones with lowest GHGs emissions per capita, while the first and the
third cluster only show a lower-than-average emissions per capita for two of
the three considered gases. Finally, the countries in the fourth cluster are the
least virtuous, with emission values for each gas considered higher than the
corresponding mean value for all EU countries. It is interesting notice that the
first cluster is those with the highest number of outliers, meaning that there are
some countries with extreme GHG emissions per capita.

4 Conclusions

We have analysed the GHG emissions per capita in the EU, using the inno-
vative AHPC algorithm. We have found that the GHG emissions are different
across countries and kind of gas. This supports the need of adopting a common
policy to reach the EU goal of reducing GHG emissions.
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Figure 1. Greenhouse gases emissions of CH4 (left panel), CO2 (middle panel), and N2O
(right panel) by varying clusters from C1 to C4.
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1 Introduction
Spectral clustering methods are based on graph theory, where data are repre-
sented by the vertices of an undirected graph and the edges are weighted by the
similarities between pairs of units, see von Luxburg, 2007, Shi & Malik, 2000,
Ng et al. , 2001. Specifically, the spectral approach is based on the properties
of the pairwise similarity matrix coming from a suitable kernel function. Then
the clustering problem is reformulated as a graph partition problem.

Let X = {x1,x2, . . . ,xn} ⊆ Rp be a set of units. In order to cluster X in K
clusters, the first step of the spectral clustering algorithm concerns the defini-
tion of a symmetric and continuous function κ : X×X → [0,∞) called kernel
function. Afterwards, a similarity matrix W = (wi j) can be assigned by setting
wi j = κ(xi,x j)≥ 0, for xi,x j ∈ X. Specifically, here, we consider the following
self-tuning kernel function (see Zelnik-Manor & Perona, 2004)

κ(xi,x j) = exp

(
−
∥∥xi −x j

∥∥2

εiε j

)
, i, j = 1, . . . ,n, (1)

with εi = ∥xi −xh∥, where xh is the h-th neighbour of point xi (similarly for ε j).
Afterward, the normalized graph Laplacian is introduced as the n× n matrix
Lsym = I−D−1/2WD−1/2, where D = diag(d1,d2, . . . ,dn) is the degree matrix;
di is the degree of the vertex xi defined by di = ∑n

j=1 wi j and I denotes the
n×n identity matrix. The spectral clustering algorithm works on the embedded
space. Given K, let {γγγ1, . . . ,γγγK} be the eigenvectors corresponding to the K
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smallest eigenvalues of Lsym. Then the normalized Laplacian embedding is
defined as the map ΦΓΓΓ : {x1, . . . ,xn} → RK given by ΦΓΓΓ(xi) = (γ1i, . . . ,γKi),
for i = 1, . . . ,n. Let Y = (y′1, . . . ,y′n) be the n×K matrix of the embedded
data, where yi = ΦΓΓΓ(xi) for i = 1, . . . ,n. Finally, the embedded data Y are
clustered according to some clustering procedure. Usually, this latter step is
performed using the k-means algorithm, here, mixture models have been taken
into account, since they are more robust approaches with respect to the choice
of parameter of the spectral clustering algorithm, see Di Nuzzo & Ingrassia,
2022b for details.

As a matter of fact, in the spectral clustering algorithm, there are two free
parameters to be tuned: the local scale parameter h in the kernel function (1)
and the number of clusters K. Specifically, the kernel function plays an impor-
tant role in the spectral clustering context because it affects the entire structure
of the data. For this reason, the goal of many authors has been to find an au-
tomatic or heuristic way to select the kernel function with the corresponding
scale parameter.

In this framework, given the number of clusters K, a proposal of an auto-
matic method for parameter selection in the kernel function (1) via the Gaus-
sian mixture model according to the maximum likelihood approach is intro-
duced.

The rest is organized as follows: in Section 2 a maximum likelihood ap-
proach to select the parameter h in (1) is introduced; in order to confirm the
validity of methodology, in Section 3 some numerical examples are shown.
2 Maximum likelihood approach to parameter selection
In this section, an automatic criterion to select the parameter h in the self-
tuning kernel function (1) is introduced. Note that for the sake of simplicity,
we introduce this approach by using the self-tuning kernel function (1), but it
can be extended to other kernel functions proposed in the spectral clustering
context, see e.g Zhang & Yu, 2011, John C.R., 2020, Park S., 2021.

The parameter h in (1) has a key role in pre-processing data because it
affects the geometrical structure of the graph in terms of weight associated
with any pairs of vertices in the graph. Specifically, in Di Nuzzo & Ingrassia,
2022a a graphical approach to select the parameters of the spectral clustering
algorithm has been considered. The results in Di Nuzzo & Ingrassia, 2022a
show that by analysing the graphic features of the embedded space and the
number of the diagonal blocks of the similarity matrix W, an optimal number
of groups K can be easily selected. However, the choice of the parameter h isn’t
always easy to select. Therefore, without a criterion to address this problem,
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different values of h can be considered optimal choices.
More precisely, as h varies, we have different configurations of the data in

the embedded space, so we select h such that the embedded data are fitted by
a Gaussian mixture model as much as possible. Therefore, we don’t apply the
Gaussian mixture model for fitting a given data set, but we look for the param-
eter h such that the corresponding data set is fitted by the Gaussian mixture
model as much as possible.

For this purpose, we analyse the maximum log-likelihood parameter esti-
mates deriving from the Gaussian mixture model using the EM algorithm and
set h according to the maximum log-likelihood. In other words, we fit a Gaus-
sian mixture model (with a fixed number K of components), according to the
maximum likelihood approach, to different data sets corresponding to differ-
ent h ∈ H , where H ⊆ {1, . . . ,n−1} is the collection of possible parameters h
considered in the numerical experiments. Then we get a set of maximum like-
lihood values l1, . . . , l|H | for each data set, and select h∗ leading to the overall
maximum likelihood value, i.e. h∗ = argmaxhlh. Our proposal is summarized
in Algorithm 1.

Algorithm 1 Parameter selection h in (1)
1. ∀h ∈ H , compute the spectral clustering algorithm where the last step is

executed with Gaussian mixture model.
2. ∀h ∈ H , compute the log-likelihood value using EM algorithm obtaining

the log-likelihood set L =
{

l1, . . . , l|H |

}
.

3. Select h according to the maximum log-likelihood value, i.e. h∗ corre-
sponds to l∗ = maxL .

3 Numerical examples
Numerical examples according to the proposed approach (Algorithm 1) are
here presented.
Table 1. Toy data.

h Acc ARI Lik
1 1 1 3961.853
2 1 1 2658.617
10 1 1 2463.996
20 0.9866 0.9444 2424.739

Table 2. Flame data.

h Acc ARI Lik
2 0.9875 0.9501 344.7159
5 0.9125 0.6789 238.3863

10 0.9042 0.6517 307.1519
48 0.8583 0.5116 244.413

Toy. Toy data (http://cs.joensuu.fi/sipu/datasets/) consists
of n = 373 units, p = 2 variables and K = 2 clusters. In Table 1 we list, for
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some parameters, the accuracy, ARI, and the log-likelihood values, the optimal
choice according to Algorithm 1 corresponds to h = 1.
Flame. The Flame data (http://cs.joensuu.fi/sipu/datasets/)
consists of n = 240 units, p = 2 variables and K = 3 clusters. In Table 2 we
list ARI and log-likelihood values for some h parameters. Also in this case,
the maximum log-likelihood corresponds to the maximum value for accuracy
and this confirms our proposal.
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heterogeneity.
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Finite mixture (FM) models and related latent variable models are over
one hundred years old. The origin of the FM model is usually attributed to
Newcomb and Pearson (i.e., Newcomb, 1886; Pearson, 1894). Stigler, 1986,
however, at least traces its origin back to the analysis of conviction rates by
Poisson in the second quarter of the nineteenth century. Since 2000, the use
of these models has grown exponentially. In the past few decades, advances in
computer technology, FM modeling has proven to be a powerful tool for the
analysis of a wide range of empirical problems. For instance, in the social sci-
ences, which have a long tradition of latent class (LC) models, following the
seminal work by Lazarsfeld and refinements notably by Goodman and Clogg
(see, e.g., Goodman, 1974 and Clogg, 1995), more sophisticated models are
gaining popularity. McLachlan & Peel, 2000 provide a good overview of the
field until 2000. The exponential growth in the use of these models over the
past two decades clearly shows that they are directly related to the democ-
ratization of statistical computation using fast personal computers (PCs) and
increasing availability of software for their estimation.

This work presents an overview of the field using a systematic literature
review. In addition to searching for articles using keywords to retrieve papers,
we also used papers citing well-known references in the field (e.g., Titterington
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et al. , 1985; McLachlan & Peel, 2000; Scrucca et al. , 2016). The extraction
and selection of papers from the Web of Science follows the PRISMA (Pre-
ferred Reporting Items for Systematic Reviews and Meta-Analyses) method-
ology. A total of 38,997 papers were included in the analysis. Topic analysis,
a special case of text mining, is used to identify topic clusters in the corpus.

Results show the diverse use of FMs in the literature. Most publications
use FMs to identify clusters. However, in other applications and contexts, top-
ics cover density estimation, defining prior probabilities in Bayesian statistics,
discrete latent variables, the golden standard problem, speech modeling, imag-
ine analysis, longitudinal and trajectory analysis, or social class analysis. This
research establishes a typology in the field of FM methodology and shows its
wide range and flexible use in statistical modeling.
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1 Introduction

Much empirical work in general social sciences leverages on questionnaire
data analysis to measure possibly unobserved (latent) traits. In these con-
texts crucial working assumptions are that items have the same discriminatory
power, unidimensionality of the latent trait, and measurement equivalence (in-
variance) in the scale.We focus on the assessment of potential violations of
measurement equivalence in longitudinal studies. Namely, when respondents
are repeatedly measured over time, and the model for the latent trait is not
strong enough to describe the dependence structure among the items and ex-
ternal variables. This phenomenon is also known as differential item function-
ing (DIF), and we study it in connection with latent Markov models (see, e.g.,
Bartolucci et al., 2013). We specify distinct notions of DIF, combining and
extending ideas from Kankaraš et al., 2018 and Masyn, 2017. Effectively, we
develop a toolkit based on a classical model selection tool - i.e., the Bayesian
Information Criterion - to select the most appropriate DIF configuration. An
extended presentation of the technical framework, and of both numerical and
real-data results is available in Di Mari et al., 2022.
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2 Mathematical Formulation

Let Yith, h = 1, . . . ,H, be the h-th dichotomous indicator, measured for the i-
th subject, i = 1, . . . ,n, at time t, t = 1, . . . ,T ; observed alongside a vector of
time-specific covariates Xit . In addition, let Uit denote a discrete latent variable
with support {1, . . . ,K}, which follows a possibly inhomogeneous first-order
Markov chain. In case of measurement invariance (no DIF), we assume the
data arise from the following model

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

P(Yit1 = y1, . . . ,YitH = yH |Uit = k) =
H

∏
h=1

φyh
h|k(1−φh|k)

1−yh ,

log
[

P(Ui1 = k | Xi1)

P(Ui1 = 1 | Xi1)

]
= α1k +β1kXi1,

log
[

P(Uit = k |Ui,t−1 = j,Xit)

P(Uit = j |Ui,t−1 = j,Xit)

]
= αk j +βk jXit ,

(1)

where the first equation denotes the measurement model which involves the
item specific probabilities φyh

h|k. The two remaining equations define structural
models for the initial and transition probabilities. The parameters α and β
model the effect of the covariates on both the initial and transition probabil-
ities. For the sake of simplicity we assume, as commonly done within this
context, that such regression coefficients are time constant letting the covariate
values be the driver of time heterogeneity. If DIF is allowed, the measurement
model depends on Xit as

logit(φh|k) = γhk +ηhtkXit . (2)

where γ is the intercept term and ηhtk represents the direct effect of the
covariate on the item specific probabilities. From equation (2) other DIF sce-
narios can be derived:

1. No DIF: The covariates only affect transition probabilities but they do
not affect item specific probabilities.

2. Full DIF: The covariates affect both the transition probabilities and the
item specific probabilities. The ηhtk vector varies across items, time, and
class.

3. Time-Constant DIF: The ηhtk vector varies across items and class, but
remains fixed across time.

4. State-Constant DIF: The ηhtk vector varies across time and item, but re-
mains fixed across latent states.

5. State- and Time- constant DIF: The ηhtk vector is homogeneous across
time and latent states.
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3 Results

We analyse show syntetic simulation results and a real data analysis. These
somewhat summarize the results reported in Di Mari et al., 2022.

3.1 A simulation study

Table 1 reports the performance of the methodology in terms of rate of correct
classification over 500 replicates for each setting. The fabricated data sets are
based on n = 500, T = 4, K = 3, H = 10, with a single standard Gaussian
covariate. It can be seen that the proper model is always selected with high
probability.

3.2 General social survey: Measuring tolerance toward non-conformity

Data are taken from the American General Social Survey (GSS), a survey
of the English-speaking, non-institutionalized adult population of the United
States. The H = 5 binary items are formulated as follows: “Suppose . . . wanted
to make a speech in your community. Should he be allowed to speak?” and
are referred to communists, atheists, militarists, homosexuals, and racists.

We include the covariate “Education”, which we re-code into three cate-
gories. The best fit reveals a direct effect of Education on items, pointing out
that to a higher education corresponds, on average, a higher probability to al-
low “Atheists” “Communists” “Homosexuals” “Militarists” and “Muslims” to
speak in public.

The lowest BIC is attained at time- and state-constant DIF (DIF 4), i.e., for
differing levels of education, individuals have varying probabilities of scoring
“Yes” to the items, regardless of the underlying tolerance (latent) type, and
record time (see Figure 1).
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True Model

BIC No
DIF

Full
DIF

Time
Constant

DIF

State
Constant

DIF

State
Time

Constant
DIF

No DIF 1.00 0.00 0.01 0.00 0.00
Full DIF 0.00 1.00 0.00 0.00 0.00
Time constant DIF 0.00 0.00 0.99 0.00 0.00
State constant DIF 0.00 0.00 0.00 1.00 0.00
State Time constant DIF 0.00 0.00 0.00 0.00 1.00

Table 1. Confusion matrix normalized by column to evaluate the BIC performance.
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(“Racists”) (0.14)
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(“Muslims”) (0.23)

Figure 1. GSS data: Estimated response probabilities to answer “Yes” given state
membership (on the left) and estimates of the direct effect ηh of the covariate “Edu-
cation” on the six items available according to the time- state-constant DIF (on the
right). Standard errors in parentheses are based on the observed Information matrix.
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ABSTRACT: The varying-thresholds model is a new modelling approach capable of
estimating the whole conditional distribution of a response variable in a regression
setting. The varying-thresholds model can be used for continuous, ordinal and count
responses. Conditional quantiles estimated through the varying-thresholds method are
compared to those of quantile regression. The comparison is based on models’ sim-
ulations to assess the performance of the two methodologies regarding the coverage
and width of prediction intervals. The simulation study encompasses eight different
settings with several functional forms and types of errors. In addition, a discrete vari-
ation of the continuous ranked probability score is proposed as a way to choose the
best link function for the binary models used to estimate the varying-thresholds model.
The comparison shows that the varying thresholds model performs better whenever the
functional form of the true data generating model is non-linear.

KEYWORDS: varying-thresholds model, quantile regression, robit, prediction inter-
vals, continuous ranked probability score

1 The Varying-Thresholds Model

The varying-thresholds model is a novel methodology proposed by Tutz, 2021
that can estimate the whole conditional distribution of a response variable in a
regression setting. Estimating the conditional distribution allows one to obtain
values of interest such as the conditional expected value, standard error, or
quantiles. The general form of the Varying-Thresholds Model can be written
as follows:

P(Y > θ |x) = F(η(θ,x) ) (1)

where Y is the response variable, x is a vector of covariates, F is a distribution
function and η(θ,x) is a predictor function. The predictor function can take
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Table 1. All types of data generating models used in the comparison between quantile
regression and the varying-thresholds model. Every model comprise a single covariate
and a response variable.

Model Functional Form
Error

Distribution
Covariate

Distribution

Model 1 β0 +β1x εN ∼ N(0,1) X ∼ N(5,1)
Model 2 β0 +β1x εχ2 ∼ χ2(d f = 3) X ∼ N(5,1)
Model 3 β0 +β1x εN ∼ e(x−5) ·N(0,1) X ∼ N(5,1)
Model 4 β0 +β1x εN ∼ e(5−x) ·N(0,1) X ∼ N(5,1)
Model 5 β0 +β1x+β2x2 εN ∼ N(0,1) X ∼U(−2,12)
Model 6 β0 +β1x+β2x2 +β3x3 εN ∼ N(0,1) X ∼U(−3,8)

Model 7 β0 +β1x
εCN ∼ 0.9N(0,5)+

0.1N(50,5)
X ∼ N(0,5)

Model 8 β0 +β1x+β2x2 εt ∼ t(d f = 3) X ∼U(0,6)

many forms: linear, non-linear or non-parametric. In this work, we consider a
single covariate x and adopt a linear specification η(θ,x) = βθ

0 +βθ
1x. The re-

sponse variable Y can be ordinal or continuous. The varying-thresholds model
is estimated using a series of binary regression models: for every threshold θ
in a prespecified grid of values, the response variable Y is dichotomized to be-
come binary, then a model is fitted to the data as described in equation 1. This
method allows for the estimation of varying coefficients, indexed by θ, that are
then used to compute the conditional distribution of the response variable *.

2 Data Generating Models and Simulation Settings

The varying-thresholds model and quantile regression are compared using a
variety of error assumptions and different functional forms. Quantile regres-
sion is fitted as QY |x(θ) = β0(θ) + β1(θ)x, likewise the varying-thresholds
model is estimated using the predictor function η(θ,x) = βθ

0 + βθ
1x. All the

data generating models are reported in Table 1. Model’s errors mimic the

*Note that, even if the predictor is linear, the binary response model is repeatedly fitted with
different thresholds, thus the regression function is estimated in a data-driven way.
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latent response approach , i.e. Y ∗ = f unctional f orm+ error and Y = 1 if and
only if Y ∗ > 0, e.g., a model with normally distributed error corresponds to
the probit model. The errors are always standardized to ensure comparability
of the regression coefficients. Quantile regression and the varying-thresholds
model are compared through the empirical coverage of their estimated predic-
tion intervals computed at a (1−α) = 80% level conditioned on a given value
of X = x. This interval is computed by estimating the first and ninth condi-
tional decile. The empirical coverage is calculated through a simulation. The
simulation has 1000 iterations, each time a different sample of n = 1000 ob-
servations is drawn from the generating model. After each iteration the two
methodologies compute the intervals; then, a new observation is sampled from
the generating model; the proportion of times the new observation falls within
the prediction interval is the empirical coverage level. Quantile regression is
estimated with the R package quantreg, Koenker, 2022.

3 Simulation Results and Link Selection

Table 2 reports the results of the simulations for prediction intervals condi-
tioned on the median value of X . The comparison shows that the varying-
thresholds model performs better whenever the functional form of the true data
generating model is non-linear. The lack of assumptions about the functional
relationship makes the varying-thresholds model a very flexible approach, ca-
pable of detecting non-linear effects without specifying a non-linear effect in
the predictor function η(θ,x). If the functional relationship between variables
is known in advance and it is correctly specified quantile regression generally
yields better results. The choice of the link function for the binary models used
to estimate the varying-thresholds model is crucial; a discrete approximation of
the continuous ranked probability score (CRPS), Jordan et al., 2019; Gneiting
& Raftery, 2007, is used to select the best link function. Both out-of-sample or
in-sample approaches seems to be valid with this metric. In Model8 the robit
link function with three degrees of freedom is selected through the CRPS and
yields better results than other links.

4 Conclusions

The varying-thresholds model performs better, regarding prediction intervals,
than quantile regression when there are non-linear effects and the relationship
between variables is not correctly specified. Link function selection for the
binary models’ estimation method can be facilitated using the CRPS. Areas of
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Table 2. Empirical coverage and average width of prediction intervals at 80% level on
1000 simulations from Model1−8 at the median value of X. The varying-thresholds
model is fitted with probit link function except for Model8 where it is fitted with robita
link function with three degrees of freedom.

Model
Quantile Regression Varying-Thresholds Model

Coverage Avg. Width Coverage Avg. Width

Model 1 0.783 2.562 0.783 2.567
Model 2 0.820 5.670 0.822 5.788
Model 3 0.926 3.759 0.930 4.124
Model 4 0.937 3.755 0.939 4.121
Model 5 0.704 4.651 0.865 3.306
Model 6 1.000 8.559 0.883 3.354
Model 7 0.801 33.221 0.844 37.694
Model 8 0.649 7.964 0.810 3.442
aThe robit link function is related to the t-distribution, see Liu, 2004.

future research may include different types of response variables such as count
and ordinal data.

References

GNEITING, T., & RAFTERY, A. E. 2007. Strictly Proper Scoring Rules, Pre-
diction, and Estimation. Journal of the American Statistical Association,
102(477), 359–378.
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ABSTRACT: Binary regression models represent a popular model-based approach for
binary classification. In the Bayesian framework, computational challenges in the
form of the posterior distribution motivate still-ongoing fruitful research. Here, we
focus on the computation of predictive probabilities in Bayesian probit models via
expectation propagation (EP). Leveraging more general results in recent literature, we
show that such predictive probabilities admit a closed-form expression. Improvements
over state-of-the-art approaches are shown in a simulation study.

KEYWORDS: probit model, expectation propagation, Bayesian inference, extended
multivariate skew-normal distribution

1 Introduction

Binary regression models represent a default model-based approach for binary
classification. Although the theory in the frequentist setting is well established,
flourishing research is still ongoing in the Bayesian framework, where such
models are also used as benchmarks for posterior computations (Chopin &
Ridgway, 2017). Here, we focus on the approximation of predictive proba-
bilities via expectation propagation (EP) in the Bayesian probit model

yi | βββ ind∼ BERN
(
Φ
(
xᵀi βββ

))
, i = 1, . . . ,n; βββ ∼ Np(000,ν2Ip), (1)

with βββ ∈ Rp the unknown vector of parameters, xi ∈ Rp the covariate vector
associated with observation i and Ip the identity matrix of dimension p. Φ(t)
denotes the cumulative distribution function of a standard Gaussian random
variable evaluated at t and φp(t,S) will denote the density of a p-variate Gaus-
sian random variable with mean 000 and covariance matrix S, evaluated at t.
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We show that the EP approximate predictive probabilities admit a closed-
form expression in terms of the output parameters returned by the EP routine.
Such parameters can be obtained at per-iteration cost of O(pn ·min{p,n}), as
shown in Anceschi et al. (2023) for a broad class of models and derived in full
detail for the probit model in Fasano et al. (2023).

2 Expectation Propagation (EP) review

Adapting more general results derived in Anceschi et al. (2023), Fasano et al.
(2023) showed that, calling y = (y1, . . . ,yn), the EP approximation q(βββ) ∝
∏n

i=0 qi(βββ) of the posterior distribution p(βββ | y) for model (1) can be obtained
by leveraging on extended skew-normal (SN) distributions (Azzalini & Capi-
tanio, 2014). Except for q0(βββ), which is fixed equal to the prior p(βββ), we take
qi(βββ) = φp

(
βββ−Q−1

i ri,Q−1
i
)
, i = 1, . . . ,n, with the optimal ri’s and Qi’s to be

obtained via the EP routine. Consequently, calling r0 = 000 and Q0 = ν−2Ip, one
gets q(βββ) = φp(βββ−Q−1r,Q−1), with r = ∑n

i=0 ri, Q = ∑n
i=0 Qi. At each EP cy-

cle, the parameters ri and Qi of each site i = 1, . . . ,n are updated by imposing
that the first two moments of the global approximation q(βββ) match the ones of
the hybrid distribution

hi(βββ) ∝ p(yi | βββ)∏
j ̸=i

q j(βββ) = Φ((2yi −1)xᵀi βββ)∏
j ̸=i

q j(βββ). (2)

This is immediate after noticing that (2) coincides with the kernel of a multi-
variate extended skew-normal distribution SNp(ξξξi,ΩΩΩi,αααi,τi), with
ξξξi =Q−1

−i r−i, ΩΩΩi =Q−1
−i , αααi =(2yi−1)ωωωixi, τi =(2yi−1)(1+xᵀi ΩΩΩixi)

−1/2xᵀi ξξξi,

where Q−i = ∑ j ̸=i Q j, r−i = ∑ j ̸=i r j and ωωωi = [diag(ΩΩΩi)]
1/2. Combining this

with Woodbury’s identity, Fasano et al. (2023) show that, for i = 1 . . . ,n, the
updated quantities QNEW

i and rNEW
i equal kixixᵀi and mixi, respectively, with

ki =−ζ2(τi)/
(
1+xᵀi ΩΩΩixi +ζ2(τi)xᵀi ΩΩΩixi

)
and mi = ζ1(τi)si + ki(ΩΩΩixi)ᵀr−i +

kiζ1(τi)sixᵀi ΩΩΩixi, having defined ζ1(x) = φ(x)/Φ(x), ζ2(x) =−ζ1(x)2−xζ1(x)
and si = (2yi −1)(1+xᵀi ΩΩΩixi)−1/2. These results, combined with the efficient
computation of ΩΩΩi and update of the covariance matrix Q−1 of the Gaussian
approximation q(βββ), lead to an implementation of EP having a cost per iteration
O(p2n). When p is large, and especially when p > n, EP can be implemented
at O(pn2) cost per iteration by storing and updating only the p-dimensional
vectors wi = ΩΩΩixi = Q−1

−i xi and vi = Q−1xi, i = 1, . . . ,n. Eventually, one can
compute the full EP covariance matrix as

Q−1 = ν2Ip −ν2VKX, (3)
where V = [v1, . . . ,vn], X = [x1, . . . ,xn]ᵀ and K = diag(k1, . . . ,kn).
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3 Closed-form EP predictive probabilities

One of the advantages of the Gaussian approximation provided by EP is that
it results in a simple closed-form expression for the approximate predictive
probability of observing yNEW = 1 for a new statistical unit having covariate
vector xNEW, namely PrEP[yNEW = 1 | y]. Indeed, calling ξξξEP = Q−1r and ΩΩΩEP =
Q−1 so that q(βββ) = φp (βββ−ξξξEP,ΩΩΩEP), it holds

Pr EP[yNEW = 1 | y] = Eq(βββ)
[
Φ
(
xᵀNEWβββ

)]
= Φ

((
1+u

)−1/2xᵀNEWξξξEP

)
, (4)

where u = xᵀNEWΩΩΩEPxNEW and the last equality in (4) follows by Lemma 7.1 in
Azzalini & Capitanio (2014). The only computationally relevant part in (4) is
the computation of the quadratic form u. However, when p < n, ΩΩΩEP is directly
returned by the algorithm, and u can be computed at cost O(p2). On the other
hand, when p > n (or in general when p is large), this direct computation can
be avoided since, by (3), u = ν2 [xᵀNEWxNEW −

(
VᵀxNEW

)ᵀ K(XxNEW)
]
, com-

putable at cost O(pn). Thus, Equation (4) provides an efficient closed-form
approximation of the exact predictive probability Pr[yNEW = 1 | y], which can
be computed at cost O(p ·min{p,n}) from the EP parameters.

4 Simulation study

We show with a simulation study the advantages of combining the efficient EP
implementation presented in Fasano et al. (2023) with the efficient computa-
tion of the predictive probabilities presented in Section 3. Fixing n = 100 and
ν2 = 25, we compute the predictive probabilities for ñ = 50 test units in five
different scenarios with synthetic data, for p = 50,100,200,400 and 800. We
compare the approximate predictive probabilities obtained with EP and with
the partially-factorized variational approximation (PFM-VB) (Equation (9) in
Fasano et al. (2022)) with the ones arising from a Monte Carlo approximation
exploiting i.i.d. samples from the posterior (Durante, 2019). Figure 1 shows
that EP can achieve superior accuracy for p < 2n, while in the other settings
they provide comparable results. The EP running time ranges from 0.02 to 0.12
seconds, while for PFM-VB it ranges from 0.13 to 0.23. The slightly higher cost
of PFM-VB is because, after convergence, the computation of predictive proba-
bilities requires a sampling step that takes approximately 0.12 seconds. To con-
clude, the results presented in this work make the computation of EP approxi-
mate predictive probabilities feasible in settings where currently-available im-
plementations are computationally impractical. Considering p = 800 for il-
lustration, the function EPprobit from the R package EPGLM, requires 140
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ABSTRACT: We present an exact solution for the time-varying state distribution in
hidden Markov models (HMMs) with periodic state-switching dynamics. In a case
study using African elephant data, the approach is shown to be superior to commonly
applied alternatives.

KEYWORDS: Markov chain, movement ecology, periodic stationarity.

1 Introduction

When inferring latent states and their dynamics from an observed time series,
periodic effects such as diel variation or seasonality are often of primary inter-
est. In applications such as movement ecology or climatology, hidden Markov
models (HMMs) with cyclic components are commonly used to address peri-
odic variation in the latent state process (see, e.g., Nagel et al., 2021). Infer-
ence then often focuses on the periodically varying probabilities of occupying
the different states. These can, in principle, be taken as the empirical distri-
bution of states per time point, as obtained using decoding algorithms such as
Viterbi (see, e.g., Schwarz et al., 2021).

To avoid the noise associated with this approach, especially for shorter
time series, it may however be desirable to instead evaluate the time-varying
state distribution as implied under the fitted model. Here we show how to ex-
ploit the periodic stationarity of corresponding HMMs to arrive at an analytic
solution for the time-varying state distribution. In a case study on elephant
movement, we demonstrate the superiority of our approach over commonly
applied alternatives.
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2 Methods

We consider an HMM comprising a state-dependent process {Xt}t=1,...,T (where
Xt can be a vector) and a latent state process {St}t=1,...,T , with St selecting
which of N possible component distributions generates Xt . The state process
{St} is assumed to be an N–state Markov chain, characterised by its initial
state distribution and the time-varying transition probability matrix (t.p.m.)

Γ(t) = (γ(t)i j ), with γ(t)i j = Pr(St = j|St−i = i),

t = 1, . . . ,T . We consider a setting with periodically varying state-switching
dynamics, such that

Γ(t) = Γ(t+L) (1)

for all t = 1, . . . ,T , with L denoting the length of a cycle. For hourly data and
N = 2, we could for example model time-of-day variation (L = 24) as

logit
(
γ(t)i j

)
= β(i j)

1 sin
(

2πt
24

)
+β(i j)

2 cos
(

2πt
24

)
, for i ̸= j. (2)

The interpretation of such transition probabilities as functions of time can be
tedious, especially when N > 2. Therefore, it has become common practice to
instead consider a simpler summary statistic, namely the (periodically varying)
distribution of the states at time t,

δ(t) =
(
Pr(St = 1), . . . ,Pr(St = N)

)
,

as a function of time t = 1, . . . ,L. The latter is usually approximated by the
hypothetical stationary distribution ρ(t) of the Markov chain that would result if
the t.p.m. was homogeneous with Γ = Γ(t), which is the solution to ρ(t) = ρ(t)Γ
subject to ∑N

i=1 ρ(t)
i = 1 (Patterson et al., 2009). This approximation of δ(t)

will in general be biased because it ignores the preceding process dynamics
as implied by Γ(t−1),Γ(t−2), . . . and instead pretends that the process has been
following the dynamics as implied by a constant Γ(t) for a considerable time.

However, for periodically inhomogeneous Markov chains as defined in (1),
there is in fact no need for such an approximation. To see this, consider for
fixed t the thinned Markov chain St ,St+L,St+2L, . . ., which is homogeneous
with constant t.p.m.

Γ̃t = Γ(t+1) · . . . ·Γ(t+L).
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MaProvided that this thinned arrkov chain is irreducible, it has a unique station-
ary distribution δ(t), which is the solution to

δ(t) = δ(t)Γ̃t

(see also Ge et al., 2006 and Kargapolova & Ogorodnikov, 2012). Provided
that the Markov chain starts in its stationary distribution, δ(t) is the state distri-
bution at time t we are interested in (and otherwise it will be at least approx-
imately correct as the thinned Markov chain will converge to its stationary
distribution).

3 Case study: elephant movement

Wee consider a complete movement track of an African elephant with hourly
GPS atta between October 2008 and June 2009. Based on consecutive lo-
cations, we calculate the Euclidean step lengths as well as the turning angles
and model them in a 3-state HMM with gamma and von Mises distributions,
respectively. Too investigate diel variation in the state-switching dynamics we
model the transition probabilities as trigonometric functions of the time of day
(see Equation 2). The fitted model features an “encamped” state with short
step lengths and frequent reversals in direction (state 1), an “exploratory” state
with higher persistence in direction and medium step lengths (state 2), and a

avvelling” state with highly directed and faast movement (state 3).
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Based on the fitted HMM, we derive the proportions of time spent in each
state using the model-implied periodic stationary distribution δ(t), the approx-
imated stationary distribution ρ(t), and the Viterbi-decoded states. The corre-
sponding results are compared in Figure 1. The hypothetical stationary distri-
bution ρ(t) differs greatly from the exact solution δ(t) and is therefore a poor
approximation in this example. Concerning the proportion of time spent in
each state obtained using the Viterbi algorithm, the results are similar to the
analytically derived periodic stationary distribution δ(t). The advantage of the
latter, however, is that it is less affected by noise in the data and instead offers
a smooth function of time, even for short time series.
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ABSTRACT: The SDPD (Spatial Dynamic Panel Data) models have been proposed
in the socio-econometric literature to analyze spatio-temporal data. In this paper we
consider a particular version of such models, where the set of spatial units is assumed
to be partitioned into clusters and the parameters of the model are assumed to be
constant within clusters and not constant across clusters. We propose a mutiple testing
procedure that helps to choose the best model for a dataset by testing a given partition
of clusters assumed under the null hypothesis.

KEYWORDS: spatial dynamic panel data models, model selection, spatial clustering.

1 Introduction

Let us consider a multivariate stationary process {yt , t = 1,2, . . .} of dimension
p, where the vector yt collects the observations at time t from p different loca-
tions (=spatial units). In this framework, the dependence between the p time
series is usually due to spatial correlation.

The following model, in equation (1), belongs to the so called SDPD class
of models, proposed in the socio-econometric literature (see Lee & Yu, 2010,
Dou et al., 2016 and references therein)

yt = D(λ0)Wyt +D(λ1)yt−1 +D(λ2)Wyt−1 +D(β1)x
(1)
t + . . . (1)

. . .+D(βk)x
(k)
t + c+ εt .

A typical feature of these models is the presence of the spatial matrix, denoted
by W, a known weight matrix with zero main diagonal, reflecting the physical
distances between spatial units. It is used to deal with spatial correlation.

The parameters of the model are collected in the diagonal matrices D(λ j)
and D(βl), with j = 0,1,2 and l = 1, . . . ,k, where the vectors λ j =(λ j1, . . . ,λ jp)′

and βl = (βl1, . . . ,βl p)′ assure that each location has its own parameter (i.e., the
model is spatially heterogeneous). Model (1) is characterized by the sum of
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several components: a) a spatial component, D(λ0)Wyt , for spatial correla-
tion; b) a dynamic component, D(λ1)yt−1, for serial correlation; c) a spatial–
dynamic component, D(λ2)Wyt−1, for the interactions between spatial and se-
rial correlation; d) the component D(βl)x

(l)
t , for the effects of some covariates

on the time series data yt (the vector x(l)t collects the data observed at time t on
the p locations and for a given covariate l, with l = 1, . . . ,k). Finally, c contains
the fixed effects while εt ∼ i.i.d. with E(εt) = 0 and Var(εt) = Σε.

It is important to note that the number of parameters in model (1) is equal
to (4+ k)p and may explode, since the number of locations p is allowed to
increase to infinity asymptotically with the time series length. Many variants
of SDPD models can be formulated starting from model (1) and considering
some restrictions on the parameters. First of all, not all the components a)-d)
are always active in the model. For example, in the well-known SAR model,
only the parameters of the spatial component a) are active, while other param-
eters are zero. Moreover, sometimes the vectors λ j and βl may have constant
parameters (spatial homogeneity, as Lee & Yu, 2010 and references therein),
other times they are not constant (spatial heterogeneity, as in Dou et al., 2016).

In this paper we consider a hybrid SDPD model, a cross between homo-
geneous and heterogeneous spatial models. By imagining that the spatial units
can be subdivided into clusters, we assume that the model has parameters that
are homogeneous within clusters and heterogeneous between clusters. This
model has not yet been considered in the spatial econometric literature, as far
as we know, and will be referred to as the clusterized SDPD model. It can be
estimated by adapting the estimation procedure proposed in Dou et al., 2016.
But in order to estimate this model consistently and efficiently, one has to know
the clustering structure (how many clusters there are and which locations are
included in each cluster). The aim here is to propose a testing procedure which
allows to test if a given partition of clusters assumed under H0 can be accepted,
so that one can use this information to estimate the clusterized SDPD model.
The proposed testing procedure is briefly described in the following section.

2 The multiple testing procedure in a nutshell

Giordano et al., 2023 propose a strategy to test a specific version of SDPD
model for a given spatio-temporal dataset. The idea underlying their method
is based on comparing two setups: A) the general version of the spatial model,
shown in equation (1) and assumed under the alternative hypothesis (unre-
stricted model); B) a nested model, assumed under the null (restricted model).
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Here we extend the procedure in Giordano et al., 2023 to the case of a
clusterized SDPD model. Denote with S the number of clusters assumed under
H0 and let {Gs, s = 1, . . . ,S}, be a partition of {1, . . . , p} with ps the number
of units in the s-th cluster, Gs. So, it is ∑S

s=1 ps = p. The testing procedure is
based on the following test-statistics

δ̂ jis = θ̂(u)
ji − θ̂(r)

js j = 1, . . . ,3+ k; i ∈ Gs;s = 1, . . . ,S; (2)

where θ̂(u)
ji is the unrestricted estimator of the j-th parameter in the vector

θi = (λ0i,λ1i,λ2i,β1i, . . . ,βki)′, while θ̂(r)
js is the restricted estimator, derived

under the null hypothesis as

θ̂(r)
js =

1
ps

∑
i∈Gs

θ̂(u)
ji , (3)

that is the average of the unrestricted estimated values for the spatial units in
the s-th cluster. These estimators are described in details in Giordano et al.,
2023. When the true SDPD model is the one assumed under H0 (i.e., the
assumed clustering partition is correct), the two estimators θ̂(u)

ji and θ̂(r)
js are ex-

pected to produce similar results (in mean) and the statistics δ̂ ji are expected to
be centered around zero. A graphical evidence is given in Figure 1, where we
simulated 200 replications of a clusterized SDPD model with p = 10 locations
(on the x-axis) and S = 4 clusters. The clusters are shown by colours, but note
that we assume only 3 clusters under the null hypothesis (more specifically,
H0 is true for the first two clusters while the last two clusters are erroneously
assumed to be one). The boxplots summarize the unrestricted θ̂(u)

ji (on the left)

and restricted θ̂(r)
js (in the center) estimations of the parameters. On the right,

the values of the test-statistics δ̂ ji, for each location. As evident from the fig-
ure, the test-statistics correctly deviate from the null hypothesis for the last
two clusters. Note that the procedure is organized as a mutiple test (one test
for each location), where a Bonferroni-type correction is used to calibrate the
global size (details are reported in Giordano et al., 2023).

In the simulation study we have further considered different values of di-
mension p = (10,50,100) and sample size T = (100,500,1000). Other set-
tings are fixed as in Giordano et al., 2023. The results are consistent in terms
of False Positive Rate (i.e., the average proportion of locations for which we
wrongly reject H0; note that it is not equivalent to the global size) and False
Negative Rate (the average proportion of locations for which we wrongly ac-
cept H0), as reported in the following table for the parameter λ1i.
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Figure 1. For a clusterized SDPD model with 10 locations (x-axis), the boxplots summarize the un-
restricted (left) and restricted (center) estimations of the parameter λ1i. On the right, the values of the
test-statistics for each location. There are 4 clusters (=colours) in the true model, but we assume only 3
clusters under the null hypothesis (so, H0 is true for the first two clusters while it is false for the last two).

False Positive Rate False Negative Rate
T = 100 500 1000 100 500 1000

p = 10 0 0 0 0.53 0.27 0.15
50 0 0 0 0.09 0.06 0.06

100 0 0 0 0.12 0.06 0.04

There are many real cases where one can apply our testing procedure. For
example, one may consider spatial data observed in a country and may want
to test if the SDPD model is homogeneous within counties and heterogeneous
between counties. In such a case, the clusters are the counties and the units in
each cluster are perfectly identified under H0. Our procedure allows to test if
the assumed clusterized SDPD model is a good model for the dataset at hand.
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ABSTRACT: Forecasting multiple dependent zero-inflated count processes is a prob-
lem encountered in many statistical applications. Standard parametric approaches typ-
ically rely on independence assumptions that fail to capture dependence structures.
Here a Bayesian nonparametric approach is proposed to overcome this problem and
showcased on a real dataset of civil conflicts in Asia. The forecasting model is ob-
tained by generalizing the clustering methods proposed in Franzolini et al. (2023).

KEYWORDS: clustering, enriched Dirichlet, excess of zeros, mixtures of finite mix-
tures, rare events

1 Introduction

In statistical applications involving count data, it is common to encounter
datasets showcasing a large number of zeros. Analyzing zero-inflated data re-
quires statistical models that extend beyond standard count distributions, such
as Binomial, Poisson, or Negative Binomial. Adding to the likelihood func-
tion a parameter specifically controlling the probability of observing a zero
count is a popular strategy (Mullahy, 1986; Lambert, 1992), but this approach
still relies on strong parametric assumptions regarding positive counts and is
difficult to extend to multivariate count data: it requires a large number of pa-
rameters to avoid simplistic independence assumptions between multiple pro-
cesses. Furthermore, when predicting future outcomes, the likelihood func-
tion is complicated by covariate values or autoregressive components, adding
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to the complexity of the multivariate distribution of many zero-inflated pro-
cesses. One flexible, yet parsimonious, solution has been recently proposed
by Franzolini et al. (2023). They model joint probabilities of zero-inflation
using a Bayesian enriched mixture of finite mixtures, obtained by combining
the works of Wade et al. (2011) and Argiento & De Iorio (2022). The strength
of the method relies on the fact that, within each mixture component, different
processes are modeled with an independent kernel and the dependence across
multiple count processes is captured by the underlying clustering structure.
Thanks to the prior on the number of components of the mixture, the model
automatically adjusts its complexity (measured by the number of parameters to
be estimated) based on the data, ultimately requiring fewer parameters than tra-
ditional multivariate approaches when the data suggest so. Lastly, the method
provides an additional interesting inferential outcome, i.e., a two-level cluster-
ing of subjects, based on the patterns of zero/non-zero counts (outer clustering)
and values of positive counts (inner clustering). In Franzolini et al. (2023), the
inferential goal is to detect groups of subjects with different count patterns and
the data are cross-sectional. In this work, we extend their approach including
in the model subject/time-specific covariates, autoregressive components, and
random effects, aiming at predicting multiple longitudinal zero-inflated out-
comes. We name the resulting model zero-inflated enriched mixture (ZIEM)
regression.

2 ZIEM regression

The ZIEM regression is presented for a bivariate count process (Xi,t ,Yi,t), with
multivariate predictors Zi,t , where i and t denote subjects and time, respec-
tively. The zero/non-zero components of the responses, i.e., X̃i,t = (Xi,t > 0)
and Ỹi,t = (Yi,t > 0), are modeled through a finite mixture model with bivari-
ate kernel where mixture components are defined by the parameters of a logit
regression with an autoregressive component, i.e.,

(X̃i,t ,Ỹi,t) | pi,t , qi,t
ind∼ Bern(pi,t)×Bern(qi,t)

logit(pi,t) = α(x)
i +β(x)

i Xi,t−1 +(η(x))T Zi,t (1)

logit(qi,t) = α(y)
i +β(y)

i Yi,t−1 +(η(y))T Zi,t

(α(x)
i ,α(y)

i ,β(x)
i ,β(y)

i ) | M0, w, θ iid∼
M0

∑
m=1

wm δθm (η(x),η(y))∼ N (0, I)

θm | M0
iid∼ N (0, I) w | M0 ∼ DirichletM0(γ0, . . . ,γ0) M0 ∼ Poi0 (λ0)
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Figure 1. Civil conflict data: data are part of a Defense Advanced Research Project
Agency (DARPA) funded project which has created a dataset of over 2 million
machine-coded daily events occurring between actors within the Asia-Pacific region.

where θ = (θ1, . . . ,θM0), with θm ∈ R4, and Poi0 denotes a shifted Poisson
distribution on {1,2, . . . ,}. The model (1) induces an outer clustering struc-
ture of the subjects denoted by i. Then, within each outer cluster m and in-
dependently across outer clusters, the positive component of the responses is
modeled through a finite mixture model with bivariate Poisson kernel, i.e.,

(Xi,t ,Yi,t) | (Xi,t > 0), (Yi,t > 0), µi, νi
ind∼ Poi0(µi)×Poi0(νi)

(µi,νi) | Mm, qm, ξm
iid∼

Mm

∑
m=1

qm,sδξm,s (2)

qm | Mm ∼ DirichletMm(γ, . . . ,γ), ξm,s | Mm
iid∼ Q0, Mm ∼ Poi0 (λ)

where ξm = (ξm,1, . . . ,ξm,Mm), with ξm,s ∈ (R+)2 and Q0 is a bivariate Log-
normal distribution with independent components. The extension to processes
with dimension d > 2 is straightforward.

3 An application to civil conflict

We test the out-of-sample predictive performance of our model on a monthly
bi-variate dataset concerning domestic civil conflicts from 1997 to 2010 in
n = 26 countries in Asia. The observed responses are plotted in Figure 1. For
a detailed description of the dataset, we refer to Bagozzi (2015). Monthly
data from 1997 to 2009 are used to train our model (ZIEM regression), a zero-
inflated Poisson (ZIP) regression, and a zero-inflated Negative Binomial re-
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gression (ZINB) regression. ZIP and ZINB regressions are estimated with the
R package pscl (Zeileis et al., 2008). Data from the year 2010 are used to
evaluate the prediction performance. All three models include an autoregres-
sive component and three covariates (i.e., log-GDP per capita, GDP growth,
log-population), which are used to predict the occurrence of a non-zero count.
Table 1 summarizes the predictive performance of the three models, based on
which we conclude that ZIEM regression outperforms the competitors.

Table 1. Out-of-sample predictive performance: root mean squared error (RMSE),
normalized root mean squared error (NRMSE), maximum squared error (max{ê2}),
and squared error (e2) distributions’ quantiles. Bold values denote the best perfor-
mance.

x s.t. p̂r(e2 > x) = p
Model RMSE NRMSE max{ê2} p=0.15 p=0.25 p=0.50
ZIEM reg. 6.72 0.1527 26.07 7.44 4.77 1.18
ZIP reg. 7.52 0.1708 35.74 8.22 8.00 1.72
ZINB reg. 8.07 0.1834 36.90 8.11 7.10 5.26
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ABSTRACT: Searching for as yet undetected γ−ray sources is a major target of the
Fermi LAT Collaboration. We address the problem by clustering the directions of the
high-energy photon emissions detected by the telescope onboard the Fermi spacecraft.
Putative sources are identified as the excess mass of disconnected high density regions
on a sphere mesh, which allows for their joint discrimination from the diffuse γ−ray
background spreading over the entire area. Density is estimated nonparametrically
via binned directional kernel methods. The identification is accomplished by breaking
the problem into independent subregions of the sphere separated by empty bins, thus
leading to a remarkable gain in efficiency.

KEYWORDS: astrostatistics, directional data, modal clustering

1 Introduction

The Large Area Telescope (LAT) is an imaging γ−ray detector onboard the
Fermi spacecraft, designed to perform an all-sky survey and gain a deeper
comprehension of the processes responsible for generating and boosting γ−
ray particles discharged by celestial bodies. Discovering and locating such
sources is one of main purposes of the survey, and a declared target of the
Fermi LAT collaboration. A main challenge, however, is the to separate the
signal of the putative emitting sources from the diffuse γ−ray background
which spreads over the entire area observed by the telescope. Furthermore,
it is required to handle a remarkable computational burden, due to the huge
amount of data recorded by the LAT.

Since γ−ray sources shall be intended as peaks of energy arising from a
diffuse background, the underlying intuition complies with the nonparametric,
or modal formulation of a clustering problem, which is here efficiently adapted
to the considered framework. Modal clustering relies on the assumption that a
probability density underlies the data, and clusters are defined as the domains
of attraction of the density modes. With respect to most clustering methods,
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relying on heuristic ideas of similarity between objects, the modal formulation
is built on a probabilistic framework, which allows, for instance, a natural
application of inferential tools. Additionally, the number of clusters is inherent
to the data density and determined itself within the estimation process.

In this work we discuss a nonparametric method specifically conceived for
high-energy γ−ray sources detection and discrimination from the background
noise (Section 2). Its application is illustrated on a set of data drawn from one
of the catalogues released by the Fermi LAT Collaboration (Section 3).

2 Nonparametric clustering for γ−ray sources detection

Nonparametric, or modal clustering hinges on the assumption that the data
(x1, . . . ,xn)′ are sampled from a probability density function f . The modes of
f represent the archetypes of the clusters, in turn described by the surrounding
regions. An indirect route to identify clusters, without attempting the explicit
task of mode detection, is through disconnected (upper) density level sets of
the sample space. Specifically, any section of f , at a level λ, singles out the set

L(λ) = {x ∈ Rd : f (x)≥ λ}, 0 ≤ λ ≤ max f

which may be connected or disconnected. In the latter case, it consists of a
number of connected components, associated with a cluster at the level λ.

While there may not exist a single λ catching all the modal regions, any
connected component of L(λ) includes at least one mode of the density. On the
other hand, for each mode there exists some λ for which one of the connected
components of the associated L(λ) includes that mode at most and identifies
the excess mass of that mode (Müller & Sawitzki, 1991). Hence, all the modal
regions may be detected as the connected components of L(λ) by varying λ
(Figure 1). Points belonging to the surrounding regions are usually allocated
to the clusters subsequently. See Menardi, 2016 for a detailed review.

Within the framework of γ−ray source detection, the data typically consist
of an event list which gives the direction in the sky of each detected photon
along with additional information. If the distance to the emitting source is
not relevant, the data points are placed on the celestial sphere with Earth at
its center and unit radius, as shown in the left panel of Figure 2. Directions
are expressed in polar coordinates, that is, co-latitude (θ) and longitude (φ) in
geographical terms, which can easily be back-transformed to Cartesian coor-
dinates x = (cosθ,sinθcosφ,sinθsinφ) on the unit sphere.

Due to the huge mole of available data, streamlining is firstly pursued via
data discretization: rather than considering single photon emissions, the sphere
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is partitioned into a thick triangle mesh, by recursively subdividing an icosa-
hedron. Each of the B bins of the mesh is then associated with the count nb of
its inner photons. Density of photon emissions is then estimated nonparamet-

y,, via binned directional kernel methods:

f̂ (x) =
1

dif

dif
LA

draW

sepa
ef

ef

K

K
n

B

∑
b=1

nbKhh(x−mb)

where KHH(·) is von Mises-Fisher kernel with concentration parameter 1/h2, n
is the sample size, and mb is the centroid of the bth bin. This already produces
by itself a computational gain of ffificiency. Clustering is then built by identi-
fying, for varying λ, the connected components of the upper level sets of the
binned estimate, as union of edge-connected bins of the mesh. Once again, the
mesh structure allows to accomplish the task ffificiently on the whole sphere,
by breaking the problem into independent subregions rrated by empty bins.

The specific λ identifying the excess mass of each modal region allows
for defining a source as the set of photons lying within the associated upper
density level set. Outskirt photons are labeled as background.

3 Empirical analysis

Wee applied the proposed procedure to a set of data wwn from the 3FHL
catalog of the Fermi ATT collaboration and spread on the whole sky map,
along with the fffuse background. The sky distribution of the data, illustrated
in Figure 2, is quite heterogeneous, with most of photon emission (around
84.4%) originated from a fffuse background noise, which mostly concentrates
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Number of detected sources
TPR 0.9013
FPR 0.2170

Figure 2. Left: source data from the 3FHL catalog of the Fermi LAT collaboration
(yellow), and the diffuse background (light blue). Right: a cut of the sphere highlight-
ing the mesh built on the sphere and the opportunity of working on small separated
regions separated by empty bins. The table reports the results of the proposed method.

at the Galactic plane; in the same area, overlapping sources of various sizes
arise while in the extragalactic sky sources are rather separated. The data set
include 469784 photons, among which 73318 are emitted by 1529 sources,
whose size range from 4 to 3572 photons.

Since the data are drawn from a catalogue of already detected sources, we
may evaluate the performance of the procedure with respect to the knowledge
of the pertaining source of each photon emission. As a summarizing measure
of the quality of the association, we compute the True Positive Rate (TPR)
and the False Positive Rate (FPR). The former index is defined as the propor-
tion of true sources correctly detected, while the latter one corresponds to the
proportion of estimated components formed in fact by background photons.

Results, summarised in Figure 2, show an overall good performance with
respect to both the detection of sources, and the discrimination between pho-
tons emitted by sources and background. Future research will focus on provid-
ing the detected sources with a significance measure, as well as reducing the
spread of the detected sources, since not reported results show a non negligible
quote of misclassified background photons, lying nearby the sources.

References

MENARDI, G. 2016. A review on modal clustering. Int.Stat.Rev., 84, 413–433.
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ABSTRACT: To evaluate the performance of clustering algorithms is challenging be-
cause typically the true classes are unknown. In this paper we propose a new clus-
ter validity method that combines internal and relative criteria and employs Machine
Learning algorithms to produce a relative validity ranking of partitions obtained from
different clustering algorithms. Compared to other methods, the proposed approach
considers the features’ structure explicitly, can handle high-dimensional data, and can
be applied to various clustering algorithms. The method has been tested on a simulated
benchmark dataset, demonstrating its ability to rank correctly 11 classical clustering
algorithms.

KEYWORDS: cluster validity, machine learning, simulation.

1 Introduction

Statistical learning methods can be categorized as supervised or unsupervised,
according to on the availability of an associated response variable. In super-
vised methods the goodness of the estimated model is computed by comparing
the prediction with the response variable, whereas in unsupervised methods
the evaluation of their performance is very challenging because typically the
true classes are unknown (Hastie et al., 2009). Cluster analysis is an unsu-
pervised method that deals with grouping a collection of objects into homo-
geneous clusters without having any information about the class of any object
(Hennig et al., 2015). There are several clustering algorithms available, none
of which can be considered universally “best” in all circumstances. Therefore,
it is common practice to compare the performance of several algorithms. The
evaluation of a clustering algorithm’s results is called cluster validity, which
can be investigated through three main approaches: external, internal, and rel-
ative criteria. External criteria compare the obtained partition to externally
known results, while internal criteria use only inherent quantities and features
of the dataset, such as the proximity matrix. Relative criteria compare a set
of defined partitions based on a pre-specified criterion. This paper proposes a
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cluster validity method that combines internal and relative criteria, inspired by
the validation of gray-level thresholding image segmentation algorithms. The
proposed method employs Machine Learning algorithms to produce a relative
validity ranking of partitions obtained from different clustering algorithms ac-
cording to a predefined validity criterion. The goodness of the method’s fit is
evaluated through tests on a simulated clustering benchmark dataset.

The paper is structured as follows: Section 2 describes the proposed clus-
ter validity approach’s methodology. In Section 3, a simulation study is per-
formed. Finally, Section 4 contains some concluding remarks and a discussion
of future work.

2 Validation method

The aim of a clustering algorithm is to split observations into subsets based
on a reasonable pattern in the data. The assigned classes express information
about the pattern identified by the algorithm in the data, allowing to measure
how much the identified pattern corresponds to the features’ structure. As the
true pattern is unknown, the quality of the identified pattern cannot be assessed
absolutely, but it can be assessed relatively.

To evaluate the coherence between the assigned classes and the features’
structure, Machine Learning algorithms (ML) are employed, using the classes
as the response variable and the features as independent variables. The perfor-
mance of ML, indicated as ρ, serves as a relative proxy for the reliability of the
output of the clustering algorithm. The performance of ML can be measured
by several indexes, such as accuracy, specificity, sensitivity, etc., according to
which aspect the analyst wants to focus on. Particularly, ρ does not indicate
how well the partition corresponds to the pattern in the data, but it indicates
the clustering algorithm output’s quality compared to that of other algorithms.
Therefore, by ordering the different ρ obtained in each partition, it is possible
to rank the clustering algorithms according to their capability to cluster the
objects on the basis of the pattern in the data.

Compared to other cluster validity approaches (Arbelaitz et al., 2013), the
proposed method has some advantages. For example, external criteria ap-
proaches require externally known results, which may not always be available
or applicable to the problem at hand. Internal criteria approaches only use
quantities and features inherent to the data set and may not provide an accu-
rate assessment of the clustering output’s quality. Relative criteria approaches
compare different partitions based on a pre-specified criterion, but they do not
consider the features’ structure explicitly. The proposed method, on the other
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hand, uses Machine Learning algorithms to evaluate the coherence between
the assigned classes and the features’ structure and produces a relative validity
ranking that takes this coherence into account. Moreover, the proposed method
has the potentiality to be further developed to handle high-dimensional data
and to be applied to various clustering algorithms, making it a versatile and
robust method for cluster validity assessment.

3 Simulation study

To test the effectiveness of our method in ranking clustering partitions based on
their ability to accurately reflect the data pattern, we conducted a simulation
study. Our assumption was that the greater the noise in the data, the poorer
the partition obtained by clustering algorithms. Therefore, we expected our
method to rank the partitions based on the level of noise in the data.

For each clustering algorithm, we selected the best partition identified by
the indexes included in the R function of clusterCrit::intCriteria
(Desgraupes, 2018) within the range of 10-25 clusters. We then varied the level
of noise in the data from 0% to 100% by randomly changing the classes of the
partition. For instance, a noise level of 0% meant that no noise was added, and
the classes of the partition remained the same. A noise level of 50% indicated
that the classes of half of the observations were randomly assigned, while the
classes of the other half were kept the same. In this simulation, we considered
Support Vector Machine (Steinwart & Christmann, 2008) as Machine Learning
algorithm, and 11 classical clustering algorithms.

Figure 1 shows that with the lower level of noise in the data, the method
obtains higher values of ρ. So considering a partition is better when ρ is high,
the method ranked correctly the partitions from the best (obtained in the data
with no noise) to the worst (obtained in the data with the highest level of noise),
for each of the 11 clustering algorithms. In that way, it is possible to use the
method to rank different partitions without knowing the “true” one.

4 Conclusions

Validation of clustering algorithm output is of high interest due to the lack of a
response variable to supervise the analysis. We have illustrated how the use of
a Machine Learning algorithms-based method could allow for the ranking of
clustering algorithms based on the proximity of their partitions to the unknown
“true” partition. Using a simulated dataset, we showed that the method can
rank the clustering algorithms among 11 different scenarios characterized by
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Figure 1. Trend of performance of the validation method according to the level of
noise added in the data.

different noise levels. We believe that the proposed validation approach can
enable the comparison of widely used clustering algorithms and help auditors
choose the appropriate method for each situation.

As a potential extension, we are exploring the feasibility of applying the
algorithm to big data scenario. In fact, many classical cluster validation in-
dexes that already exist are characterized by high computational cost. Thus, it
can be prohibitive to use them in big data scenarios.
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IS THE SUBJECTIVE FINANCIAL WELL-BEING OF
POLISH FAMILIES CHANGING WITH TIME?

AN EMPIRICAL STUDY BASED ON CONSTRAINED
LATENT MARKOV MODELS
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ABSTRACT: Poland is one of the EU countries with the lowest level of perceived
financial position, according to most recent Eurostat data. To investigate the problem
of such a low level of subjective well-being and to show the changing behaviour of
Polish families, we apply the dynamic latent variable models in which families can
change the latent class over time. We compare the models with different numbers
of latent states, different types of constraints and we study the transitions between
latent structures at different points in time. We present the tendency of self-reporting
income position in each wave of the survey with a special focus on the results for the
respondents behaviour in waves preceding and following economic crisis. The study
is based on the national longitudinal project (Social Diagnosis) using software of R.

KEYWORDS: constrained latent Markov model, material well-being, transition ma-
trix

1 Introduction

Poland is a country of Central and Eastern Europe which have just been through
a structural and economic transition, characterised by relatively good growth
performance along with rather small (compared to Ukraine, Lithuania, Latvia
and Russia) increase in income inequality. However, Poles tend to be very un-
happy with their financial situation. The population of Poland is described by
the lower than EU-28 average rating for subjective assessment of the material
condition, ranked at the 22 position, in accordance with the latest Eurostat data
(European-Commission, 2021).

To evaluate the financial assessment of Polish households we base our
study on Social Diagonsis (Social-Diagnosis, 2015) panel research with all,
eight waves being taken in the following years 2000, 2003, 2005, 2007, 2009,
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2011, 2013, 2015. We rely our study on the sample of individual responses rep-
resented by the heads of each household. The substantive research question,
addressed by the presented analysis concerns the evolution of the subjective
assessment of the financial satisfaction in Poland. We present the tendency of
self-reporting income position in each wave of the survey with a special focus
on the results for the respondents behaviour in waves preceding and following
economic crisis.

To show the changing behaviour of Polish families, we apply the dynamic
latent variable models in which respondents are allowed to switch from one
to another latent class over time. We adopt the latent Markov (LM) models
(Bartolucci et al., 2013), extended to include the survey weights (see also Pen-
noni & Genge, 2020). We compare the models with different numbers of latent
structures, different types of constraints and we study the transitions between
latent structures at different points in time.

2 Latent Markov Models

We conceive the income perception of families as a non-observable, latent fea-
ture, evaluated through the questionnaire items. Then, latent Markov (LM)
models enable to conceive self-reporting income position as a time-varying la-
tent trait denoted as S = (S(1), . . . ,S(T )), which is assumed as a hidden stochas-
tic process of first-order having a discrete distribution with latent states.

In our analysis we observe a categorical response variable X (t), for each
time occasion t, with t = 1, . . . ,T (T = 8 waves in our case). The response
variable X (t) is designed to monitor financial satisfaction of Polish families and
has l j categories ( l j = 5 in our study), labeled from 0 to l j −1. We denote by
X the vector with elements X (1), . . .X (T ), which usually, is referred to repeated
measurements on the same respondents at different points in time.

The probability mass function of S may be expressed as

p(S = s) = πs(1)
T

∏
t=2

π(t)
s(t)|s(t−1) , (1)

where s denotes a realization of S, with elements s(1), . . . ,s(T );
πs(1) = p(S(1) = s) is the initial and π(t)

s(t)|s(t−1) = p(S(t) = s|S(t−1) = s̄) is the
transition probability of the model.

In the results, we compare different variants of the LM model (that is, with
different types of constraints posed on transition matrix), such as separate, het-
erogeneous transition matrices for each year, partial time-homogeneous ma-
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trices based on two different transitions (one until occasion T ∗ and the other
for transitions after this occasion) as well as homogeneous with one common
transition matrix for all years (see Bartolucci et al., 2013, p. 86-96, for details).

3 Results

At the first stage of our analysis we select the number of latent states and then
we try to simplify the LM model by adopting certain constraints on its param-
eters. We observe that the lowest BIC value (equal to 6, 221.312) is reached
for the LM-part-hetero with T ∗ = 6 and three number of latent states (s = 3).
We note also that, the BIC value both for LM-hetero and LM-part-hetero with
T ∗ = 6 is lower than the value of this criterion achieved for traditional LC
model (see Genge, 2021, Table 7, p.13). On the basis of the estimated con-
ditional probabilities we classify the Polish households to three latent states:
S1 – households with the lowest income perception, S2 – households generally
satisfied and S3 – households with the highest self-reported financial status.

Interestingly, on the basis of the estimated transition probabilities we can
see the difference between the evolution of the income assessment from the
first to the fifth wave and from the sixth to the last wave. Notably, the first
transition matrix (concerning years before crisis) corresponds to a consider-
ably higher level of persistence in the third, the most positive latent state than
the second transition matrix. We can observe also that in the years following
the economic crisis the respondents are more prone to remain in the unsatis-
fied and rather satisfied groups of Poles (S1 and S2) and to switch from the
highest to the state characterised by satisfaction of intermediate level. These
results might confirm just slightly deterioration of Polish moods reflecting the
economic crisis. This feature of Polish nation was already noted by Helliwell
et al. (2014) or Chzhen (2016). They found that subjective well-being de-
creased in the EU countries that were heavily affected by the crisis (Greece,
Ireland, Italy, Portugal, and Spain). We note that they considered only the
early impact of the economic crisis between 2008 and 2011. However, these
results might suggest that the crisis affected Polish families in various forms,
not only related to cutting their budgets. In a further stage of our study (Genge,
2023) we compare the results with the homogenous version of the LM model,
extended to include also time-varying covariates allowing for better charac-
teristics of changing family behaviours. This approach help us to identify the
types of families (characterised by different socio-economic features) who are
in need of greater social protection.
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ABSTRACT: This study uses graph representation learning techniques to analyze a
regional labor flow network. The methods employed, VGAE and Role2Vec, reveal
community structures and centrality of universities and research institutions in the net-
work. The study demonstrates the potential of such techniques for analyzing complex
networks and uncovering hidden structures.

KEYWORDS: graph representation learning; labour flow data; VGAE; Role2Vec

1 Introduction

The mobility of workers creates a network of connections that reflects the in-
terconnectivity between employers. Such network data can reveal insights into
the structure of the relationships between employers, which can be used to
identify communities of employers that share geographic location, industry,
and workforce characteristics (Park et al., 2019). Examining regular patterns
in the network is a key step in understanding the role and position of employ-
ers in the labour market. The role of large public sector organizations, such as
universities, in the economic context under study can be determined by their
centrality and relationship with industries employing a high number of experi-
enced professionals (Smallbone et al., 2015).

This work aims to investigate the structure of a labour flow network in
Friuli Venezia Giulia (FVG) (Morea & De Stefano, 2022). The labour market
flows are collected from Regional data from the Compulsory Communication
on Employment (RCCE).

Understanding the structure of a labour flow network involves dealing with
graph data containing rich relational information. Traditional machine learn-
ing algorithms require hand-engineered feature representation which is labor-
intensive and relies on domain-specific knowledge. Representation Learning
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(RL) provides an alternative approach to automatically learn to represent graph
data using low-dimensional vectors (Hamilton, 2020). The learned embed-
dings can be used with data visualization techniques to generate representa-
tions of graphs useful for discovering communities, hub nodes, and other hid-
den structures.

The graph RL task can be performed to assess the potential of universities
and research institutions as drivers of economic development and innovation in
FVG. The interest is in investigating whether exploring the network by looking
at both relational proximity and regular patterns yields valuable insights.

2 Methods

In this work two methods for graph RL are employed: Variational Graph Auto-
Encoder (VGAE) (Kipf & Welling, 2016), and Role2Vec (Ahmed et al., 2018).
The methods differ in their approaches to preserving the structure of the graph,
indeed they are based on two different definitions of node structural similarity
known as structural and regular equivalence, respectively. Two nodes are struc-
turally equivalent if they are relationally close, while they are regular equiva-
lent if they have similar roles or occupy similar positions in the network.

VGAE is designed to preserve the structural equivalence between nodes,
which means that structurally similar nodes should be mapped to similar em-
beddings. This is achieved by using a graph convolutional neural network
as the encoder in the model, that applies convolutional filters to the graph to
aggregate information from neighbouring nodes. VGAE share the encoder-
decoder structure with standard autoencoders and it is built to learn the gener-
ative distribution of data. The decoder is a simple inner product between the
latent representations of nodes, that enforces the reconstruction of the original
graph from the learned representations. Role2Vec is used to incorporate global
regular equivalence information, which means that nodes that share regular
patterns in the graph should be mapped to similar embeddings. The latent rep-
resentations are learned using a feature-based random walk approach, where
walks find similar nodes identified by structural properties and higher-order
graph features (e.g. triangles, 4-cycles, etc.). Both VGAE and Role2Vec have
been shown to achieve state-of-the-art performance on various graph RL tasks,
but the choice of method depends on the nature of the dataset and the task at
hand. The performance evaluation in this work is conducted without true la-
bels for a supervision task, thus it is based on visualization. The results of
the models are evaluated by exploring the network latent representations re-
embedded with Uniform Manifold Approximation and Projection (UMAP).



488

UMAP is a dimensionality reduction technique that takes local structure into
account, to increase the data representation quality in terms of clusterability.
For data visualization the number of dimensions is set to two.

The RCCE data include science and engineering and information and com-
munication technology occupations over a 8 years period, from 2014 to 2022.
To investigate the transfer of experienced professionals (P), weights (W) are
assigned to transitions from employer A to B under the assumption that the ex-
perience gained by P while working for A is transferred to B (Morea & De Ste-
fano, 2022). The sum of W of adjacent nodes defines the strength, which is an
attribute included for the interpretation of the results.

3 Results and Final Remarks

The RCCE network comprised 1084 nodes and 1641 edges. Figure 1 com-
pares the two-dimensional UMAP visualizations of node embeddings learned
with the methods. The distances between nodes in the embedding space re-
flect structural (left panel) and regular (right panel) equivalence in the original
graph. The size of the nodes indicates the strength, thus employers employing
a high number of experienced professionals are shown with bigger nodes. The
colour of the nodes highlights universities and research institutions in the net-
work. The left plot captures a community structure in which two components
clearly detach. It also seizes proximity between coloured nodes and big nodes.
The right plot shows the universities very close together in space, along with
the research institutes, illustrating the similarity of their roles in the network.
The UMAP visualizations reveal community structures and the centrality of
universities and research institutions. In particular, the study finds that uni-
versities are closer to each other in the embedding space when considering
regular equivalence, indicating that although they share qualified employers
with different organizations, structurally they play the same role.

Overall, the study highlights the potential of graph RL techniques to an-
alyze complex networks and uncover hidden structures and patterns, which
provide new outlooks on economic development and innovation. It also sug-
gests that examining different embedding algorithms tailored to specific tasks
would be valuable in addressing different research inquiries.

In encoding large graphs both methods enable the utilization of node at-
tributes, which can provide crucial information regarding a node’s community
membership and role. In future applications, exploring the impact of incorpo-
rating node attributes could yield valuable insights.
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ABSTRACT: Maintenance activities are very important in the aim to prevent 
malfunctions and ensure the reliability, safety and performance of a productive 
process. In this work, a method for the evaluation of maintenance tasks is presented in 
the aim to give an objective evaluation of the maintenance technicians  skills and 
therefore for identifying critical areas in which intervene with appropriate training. 
For this purpose, a smart helmet for the training of the operators and for the control of 
the maintenance tasks was modified with cameras and sensors. The data collected 
were analysed with fuzzy logic approach and a score of the operators  skills was 
assigned in order to increase the quality of maintenance activities.  

KEYWORDS: Fuzzy logic, Maintenance management, Quality control 

1 Introduction 

     Maintenance activities are very important in the aim to prevent malfunctions and 
ensure the reliability, safety and performance of the equipment and the overall 
quality of a productive process [1]. Best practices of maintenance management 
include the development of a maintenance strategies through preventive intervention 
plans, which involve activities such as routine inspections and scheduled 
maintenance tasks [1]. If appropriate maintenance scheduling is the basis of good 
management practice in order to minimize the stop of the production, keep accurate 
records is fundamental in the aim to identify patterns of failure, predict maintenance 
needs and create statistical historical data in order to forecast interventions with 
accurate grade of precision [1]. At the same time, IoT technologies, such as sensors 
together with machine learning algorithms, can detect potential equipment failures 
and improve predictive maintenance activities [2]. However, best maintenance 
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practices should also include operators training for improving the efficiency and 
time of the maintenance operations [3]. In fact, providing training and appropriate 
know-how to the maintenance personnel can increase efficiency and effectiveness in 
maintenance tasks [3]. Higher knowledge in maintenance tasks could also promote a 
culture of safety ensuring awareness of the operators in the risks involved in the 
intervention tasks and thus implementing the necessary precautions to avoid injuries 
or accidents [3]. In this work, we present a case study of Ineltec srl, a firm that is 
specialised in projects and maintenance operations of electric plants together with 
iInformatica srl, for the research and development activities. The goal of this project 
was in particular to design a method for the evaluation of maintenance intervention 
through an objective evaluation of the maintenance personnel skills, and therefore 
for identifying critical areas in which intervene with appropriate training. The aim of 
the method was therefore to create a powerful tool based on a first control of the 
theoretic maintenance know-how of the operators, followed by a further analysis of 
their practical skills through sensors and camera mounted on a safety helmet. The 
method gives a score by analysing all the collected data with a fuzzy logic approach 
in order to give an objective evaluation of the overall operator  skills and improve 
constantly the maintenance quality intervention. For this purpose, a helmet for the 
training and control of maintenance activities of the operators was fabricated with 
the use of a 3D printed plastic shell filled by different cameras and sensors. Finally, 
an internal survey questionnaire was conducted in order to measure the operator 
feedback about the implemented method and their awareness about the importance 
of new technologies in their maintenance activities. 

 
2. Method and results 

 
In this work, a powerful method for evaluating maintenance activities was 

developed in the aim to improve constantly the quality of the intervention and 
training the operators in a safer manner. The designed method is based on a first 
evaluation of the theoretical know-how of the operators followed by a second 
control of the skills ability in solving the maintenance tasks. The evaluation of the 
theoretical know-how consists in an exercise in which the operators should choose 
the right sequence of actions in order to complete a maintenance activity. For the 
representation of a maintenance intervention we took inspiration from finite-state 
machine method in the aim to divide a global maintenance intervention in a 
sequence of events and actions. Taking into consideration the complexity of a 
maintenance intervention we developed a new method based on bubbles of events 
which describe not only a binary condition (such as close/open) but also an 
informative-semantic information of each events. In this way, by dividing and 
plotting maintenance activities through bubbles diagram we are able to represent 
complex and not linear activities such as maintenance intervention. Therefore, in 
order to evaluate theoretical know-how, the operators should choose the right 
sequence of actions by selecting the right bubbles in the right order (Panel in figure 
1). 
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Figure 1. Bubbles maintenance test method 

 
 

 The impleme the 
aim to increase the difficulties of the test. The score is then attributed by considering 
the correct sequence of the selected actions (bubbles), decreased by the number of 
incorrect ones (disturb entities). The second phase of the evaluation consists in 

this purpose we fabricated a device for the remote real-time control of the operator 
intervention that consisted in a safety helmet modified with sensors and cameras. In 
particular, the helmet included a camera, a thermo camera and an endoscope for 
framing inaccessible places. Moreover, a mini screen and a mini sound box were 
mounted in order to communicate with remote operators for receiving instructions 
during the training activities. Through an opportune choice of each component, and 
choosing light 3D printed polymers for fabricating the outer shell of each sensors, 
the overall weight of the helmet was increased of only 320 grams in order to 
maintain a good wearability and operators  comfort during the intervention. In this 
way, by exploiting the cameras and sensors, a technician from remote can control 
the activities of the operators and give a feedback also on the practical abilities in 
solving the maintenance tasks and in case guiding the operators in critical situations. 
Thus, the final score considered both the know-how test and practical activity 
intervention taking also into consideration the boundary conditions in which the 
operator made the intervention through a fuzzy logic approach. The boundary 
conditions included: cleaning conditions (clean / intermediate / dirty), ventilation 
conditions (low / medium / high), Light conditions (low / medium / high), 
Spaciousness conditions (low/narrow/high), Noisy conditions (low/medium/high), 
customer stress conditions (low/medium/high) in the aim to increase the objectivity 
of the final score. An internal survey revealed that the totality of the operators was 
satisfied with the training activities conducted with the smart helmet and that they 
felt safer knowing that they could receive assistance remotely if needed. Considering 
the quality of the intervention, 75 % of the operators think that the helmet improved 
a lot their working activities and only the 25% think that the helmet had a small 
impact on their working activities. Finally, 100 % of the interviewers consider 
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important the adoption of new technologies in their work and think that new 
technologies will change drastically their work in the next years. 

Conclusion 

      In this project, a method for analysing the quality of maintenance activities was 
designed in order to improve the training of the personnel involved and give a 
feedback of the quality of the maintenance activities. The method consisted in a first 
evaluation of the theoretical know-how of the operators followed by a second 
control of the skills ability in solving the maintenance tasks. A fuzzy logic analysis 
was implemented in the aim to consider also the boundary conditions in which the 
operators conducted the maintenance activities and thus assigning a more objective 
score of the performed task. For the real-time control of the activities, a safety 
helmet was modified with sensors and cameras in the aim to control the practical 
skills abilities of the operators. An internal survey questionnaire demonstrates an 
increase of operational speed, safety and quality of the maintenance intervention 
through the employed method, and a general awareness of the operators about the 
importance of new technologies adopted in their work. 
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ABSTRACT: This work proposes a novel methodology for constructing gender equal-
ity indicators using an Object-Oriented Bayesian Network (OOBN). The methodology
is illustrated by focusing on the composite indicator known as Gender Equality Index,
annually released by the European Institute of Gender Equality (EIGE). By using
province-level ISTAT data, the index is re-constructed in a modern AI environment,
able to enhance its information capacity and, at the same time, to preserve its original
architecture. The modularity of the OOBN ensures a computational logic that is con-
sistent with composite indicators, while also providing additional information about
the relational structure of variables.

KEYWORDS: Object-Oriented Bayesian Networks, gender equality, composite indi-
cator, regional indicator, sustainable development goals.

1 Introduction

Gender based inequalities represent a threat to socio-economic well-being on
an individual level as well as for the society as a whole. Gender equality is one
of the objectives pursued by the Sustainable Development Goals (SDG) of the
UN Agenda 2030, as stated in the ambitious Goal 5: to achieve gender equality
and empower all women and girls. In order to reach Goal 5, gender equality
measurement plays a key role. The most widely used approach for measuring
national gender equality is through a composite indicator. Composite indica-
tors are useful in monitoring complex multidimensional phenomena, including
gender equality, by providing a single value information, e.g. ranking of coun-
tries in their progresses toward SDG 5. However, composite indicators do not
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show the process of how a country has reached its own level of national gender
equality nor they allow for monitoring or predicting the effect of policies and
interventions. In this work we aim at empowering the role of gender inequality
data analysis, by proposing a new method to measure the gender gap that can
be used alongside composite indicators to obtain a richer set of information. In
particular we employ an OOBN that follows the idea behind the computation
of the European Union’s Gender Equality Index (EU-GEI) but takes into ac-
count the multivariate dependence structure among all the variables generating
a certain level of gender equality.

2 Object Oriented Bayesian Networks

A Bayesian network (BN) (Cowell, 1998; Pearl, 1998) is a probabilistic sta-
tistical model representing the joint distribution of a set of variables by means
of a directed acyclic graph (DAG). In a DAG, nodes represent variables and
edges denote the influence of one variable to another one. Bayesian networks
possess a relevant and crucial property, named modularity, by which a pos-
sibly complex multivariate relation structure can be decomposed into smaller
modules encoding conditional independencies. In a sense, BN can serve as ba-
sic building blocks for an extended tool called Object-Oriented Bayesian Net-
works (Koller & Pfeffer, 2013). An OOBN is a multi-instances network made
of objects and special nodes. Objects are also called instance nodes represent-
ing simpler networks; the flow of information between networks is allowed by
two kinds of interface nodes: input nodes, that import information from the
OOBN into the instance; output nodes, that broadcast information from the
instance to the OOBN. Since an instance node is a BN encapsulated in the
OOBN, these models take advantage of the statistical properties of Bayesian
networks. The inference process of OOBNs is efficient due to conditional in-
dependence between standard nodes in the instance and the OOBN, given the
interface nodes. The architecture of OOBNs is particularly useful for manag-
ing large and complex domains, particularly when hierarchical structures are
present. In the literature, there are many applications of OOBNs; the most
relevant contribution for our purpose arises from the managerial framework
(Musella & Vicard, 2015) where different quality aspects have been combined
to provide a synthetic global quality indicator.
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Figure 1. Object-Oriented Bayesian Network model for the Italian province-level GEI

3 Application to Real Data

In this work, we employ an OOBN to develop a gender equality indicator for
Italian provinces based on the architecture of the EU-GEI. The EU-GEI, an-
nualy released by the EIGE, is based on 6 domains: work, money, knowledge,
time, power and health. We use province-level data from ISTAT to obtain a set
of variables that is consistent with the one employed to compute the EU-GEI.
Due to limited data availability, it is not possible to perfectly replicate the na-
tional GEI at the province level. To overcome the scarcity of gender-sensitive
data at a fine granularity, proxy variables have been included if available. As a
result all the EU-GEI domains are represented in the province-level GEI (PV-
GEI), except for the Time domain. In addition, some extra socio-economic
variables, such as province added value and firm average size are included to
investigate their relationship with GEI ingredients. The resulting OOBN, ob-
tained employing the statistical software Hugin, is depicted in Figure 1. Each
box (rounded rectangle) in the OOBN represents an instance, which is a sim-
pler network representing a specific PV-GEI domain that is linked to the whole
OOBN. In each instance, the input node (represented as a node with a dashed
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outline in the figure) is selected from among the extra variables, while the
output node is the summary value of the domain. According to the EU-GEI
methodology, this value is the geometric mean of the sub-domain measure,
which is in turn the arithmetic mean of the ingredient variables. PV-GEI in-
gredients are not visible in the OOBN at this level of representation because
they are part of the sub-networks given by the domain instances. The different
domains are then aggregated to compute the PV-GEI as a weighted geometric
mean of domain measures. This architecture allows information to flow from
extra socio-economic variables to PV-GEI ingredients, which in turn generates
a certain level of the domain nodes and of the PV-GEI. The resulting model
is consistent with the EU-GEI architecture and, at the same time, constitutes a
powerful tool to simulate scenarios of how the PV-GEI changes when ingredi-
ent or socio-economic variables take different values.

4 Discussion and future research

The proposed methodology enriches composite indicators and provides a new
perspective on the analysis of the gender gap. By employing an OOBN, we not
only obtain a measure of gender equality that is consistent with that of compos-
ite indicators but also gain insight into the multivariate relationships between
ingredients and other variables of interest. In addition, a refined granularity can
be reached depending on the available data. These findings can support policy
decision-making by shedding additional light on the complex net of factors
that affect the gender (in)equalities. Finally, the estimated OOBN provides a
simulation engine to predict the effect of policies and intervention aiming at
reducing gender-based inequalities in the Country.
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ABSTRACT: Financial literacy has become a crucial goal for countries’ policymakers
in recent decades. Since 2012, the PISA survey has been enriched by the assessment
of financial literacy of adolescent students in various countries. Through the use of
hierarchical models, we can account for variations in financial literacy levels between
countries by examining the characteristics of students and their families, as well as
analyzing the structure of formal education and policies within each country. This
analysis is based on the 2018 year.
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ABSTRACT: The choice of an appropriate number of clusters is a key issue in model-
based clustering framework. The most popular approaches are based on the informa-
tion criteria. However, often the latter may likely overestimate the number of clus-
ters even though a good density estimation is possible. Here, we provide a dynamic
model-based clustering approach to identify homogeneous Italian NUTS3 areas based
on their equitable and sustainable well-being indicators from 2004 to 2019. In partic-
ular, the proposed model allows NUTS3 areas to move between clusters over time and
a local dimensional reduction within each cluster. The empirical results show a high
heterogeneity among the NUTS3 areas, leading to a high number of clusters. Possible
strategies for merging similar NUTS3 clusters are investigated.

KEYWORDS: dimensionality reduction, dynamic clustering, hidden Markov model,
longitudinal data

1 Introduction

In Italy, the National Institute of Statistics (Istat) has developed a multidimen-
sional approach to measure “equitable and sustainable well-being” (BES), hav-
ing the aim to integrate the traditional economic indicators with the quality of
life of people, environment, inequality and sustainability measures. These in-
dicators, updated annually since 2004, are declined into 12 relevant domains.
Recently, Istat has designed a system of equitable and sustainable well-being
indicators at NUTS3 level*, i.e. at the 107 Italian provinces, to deepen the

*NUTS: Nomenclature of Territorial Units for Statistics; NUTS 3: small regions for specific
diagnoses (https://ec.europa.eu/eurostat/web/nuts/background).
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knowledge of the well-being distribution across Italy to assess inequalities
across areas. Local indicators are consistent with the national BES measures.

This paper addresses the complex, often non-linear, correlation between
the indicators, the heterogeneity characterizing the Italian NUTS3 areas and
changes and shifts in society over time under a unified framework. We identify
homogeneous NUTS3 areas which behave in a lifestyle-similar fashion while
keeping track of changes over time. We consider a clustering approach because
more structured than a suitable standard approach in socio-economic analyses.
To accommodate the multivariate longitudinal structure of the data, we pro-
pose a parsimonious hidden Markov model (HMM) that allows NUTS3 areas
to transit between clusters, i.e. different well-being levels, over time. In this
respect, a first-order finite-state Markov chain has been used to consider the
temporal dependence. Moreover, a factor model framework is considered to
capture correlation among indicators. And finally, we allow such correlations
to vary across clusters and times to make the model flexible enough to capture
the longitudinal structure of the data. The model parameters have been es-
timated through an Alternating Expected Conditional Maximization (AECM;
Meng & van Dyk, 1997) algorithm.

2 Data and methods

2.1 Data description

The motivating dataset is composed of 102 NUTS3 areas and 18 well-being
selected indicators, declined in 7 domains, to monitor their dynamics during
the period 2004−2019. This choice was made to consider the largest number
of Italian NUTS3 areas without missing data during the observational period.
Accordingly, four domains (Economic well-being, Social relationships, Land-
scape and cultural heritage and Innovation, research and creativity) and five
NUTS3 areas (Barletta-Andria-Trani, Enna, Fermo, Monza e della Brianza
and Sud Sardegna) are excluded from our analysis. The data are freely avail-
able at the Istat website†. A descriptive analysis confirms that socioeconomic
divergence between the North and South of Italy continues, with the North
more productive, rich and with a good health system, and the South/Islands,
where the economy is mainly based on tourism, with higher unemployment

†https://www.istat.it/en/well-being-and-sustainability/
the-measurement-of-well-being/bes-at-local-level.
This database contains data and metadata for the period 2004−2020.
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rates. Moreover, each BES indicator is related to others differently: the corre-
lation structure is rather heterogeneous, and patterns of nonlinear correlation
are present.

2.2 Parsimonious hidden Markov models for longitudinal data

We consider an HMM for multivariate longitudinal data allowing the density
of the observed process to follow a factorial model. In detail, the model is
defined by an observed process {Yit , i = 1, . . . ,n; t = 1, . . . ,T} and a hidden-
dependent process {Sit , i = 1, . . . ,n; t = 1, . . . ,T} defined on the cluster space
{1, . . . ,K} such that Pr(Sit | Si1, . . . ,Sit−1) = Pr(Sit | Sit−1). Regarding the ob-
served process Yit = {Yit1, . . . , YitP}, Yit p represents the p-th response vari-
able given by the i-th units at time t (i = 1, . . . ,n; p = 1, . . . ,P; t = 1, . . . ,T )
such that f (Yit |Yi1, . . . ,YiT ,Si1, . . . ,SiT ) = f (Yit |Sit). Moreover, we defined
the initial probabilities πk = Pr(Si1 = k) (i = 1, ...,n;k = 1, ...,K) and the
transition probability matrix Π = {πk| j}, where πk| j = Pr(Sit = k | Sit−1 = j)
(i = 1, ...,n; t = 1, ...,T, ; j,k = 1, ...,K). In line with the idea proposed by
Maruotti et al., 2017, we assume that conditionally to the k-th cluster, the ran-
dom vector Yit is described by:

Yit = µk +Λkfitk + eitk, (1)

where fitk is a q-dimensional vector of cluster-specific factors drawn from
NP(0,Iq), and eitk is a p-dimensional vector of cluster-specific error terms
drawn from NP(0,Ψk), where Ψk = diag(ψk1, . . . ,ψkP), which is assumed to
be independent of fitk. In other words, a unit i in cluster k follows a multivari-
ate Gaussian density with cluster-dependent mean vector µk and covariance
matrix ΛkΛ′

k + Ψk. Notice that, by constraining whether Λk = Λ, Ψk = Ψ
and Ψk = ψkIp, a family of 8 different models can be derived. To fit the pro-
posed models, we use the AECM algorithm and recursions widely used in the
HMM literature. The simulation studies results have shown a very good model
performance in terms of the accuracy of the parameter estimates, degree of
agreement between two partitions, and the ability to detect the correct number
of clusters.

3 Empirical results

We computed Akaike Information Criterion (AIC), Bayesian Information Cri-
terion (BIC) and Integrated Completed Likelihood (ICL) for each of the eight
fitted models and combination (K,q). All the information criteria select the
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unconstrained model (volumes, shapes, and orientations of the clusters are
variable among clusters) as the best solution and, in particular, BIC and ICL
recommend the solution with K = 15 and q = 4 as the most reasonable one
balancing fit and parsimony. The main results can be briefly summarized as
follows: Italian NUTS3 areas are heterogeneous; the inferred clustering struc-
ture identifies homogeneous, well-separated spatial aggregations of NUTS3
areas, leading to four Italies; persistence is the norm, transitions across clus-
ters are rare but still present; cluster-specific correlations among indicators are
effectively observed; each cluster is strongly characterized by only a subset of
well-being indicators.

4 Assessing separation between NUTS3 clusters

The estimated results show that Italy still has a significant way to go in achiev-
ing well-being convergence. The heterogeneity across NUTS3 areas is still
relevant, leading to a high number of clusters. However, the fact that some
clusters differ only by the values of a few indicators suggests that there may
be opportunities to merge similar clusters to get a more accurate overall pic-
ture of well-being in Italy and keep the specificities for further policymakers
interventions. On the basis of the most widely used approaches in the field
(see Hennig, 2010; Baudry et al., 2010; Melnykov, 2016 among others), this
opportunity is investigated.
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ABSTRACT: Torus data are multivariate circular observations that arise as measurements
on a periodic scale and are often recorded as angles. In this paper, we focus on
parsimonious model based clustering for torus data by building on the mclustmethodology.
Therefore, covariance constraints are imposed on the completely general heterogeneous
clustering model allowing a flexible and general framework to clustering torus data.
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1 Introduction

Torus data are multivariate circular observations. Many applications involve
torus data in several fields: protein bioinformatics, wind directions, animal
movements, people orientation, human motor resonance, robotics, astronomy,
meteorology, geology, medicine, oceanography. Actually, multivariate circular
data can be thought of as points on a p-torus Tp, p > 1, whose surface is
obtained by revolving the unit circle in a p-dimensional manifold. The multivariate
wrapped normal (WN) distribution is a very attractive model for torus data
(Mardia & Jupp, 2000). In Greco et al., 2022, the WN distribution has been
proved to be very useful in modeling mixtures of torus data and providing
an effective tool for model based clustering and classification, but only under a
completely general heterogeneous clustering model. In this paper, by paralleling
a widely used methodology for linear data on Rp, we focus on parsimonious
model based clustering for torus data by building on the mclustmethodology
(Scrucca et al., 2016).
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2 Parsimonious model based clustering

Let us consider a sample of size n of torus data y = (y1,y2, . . . ,yn), from the
finite mixture model with density function

f ◦(y;τ) =
G

∑
g=1

δgm◦(y;θg), (1)

where we set τ = (δ1, . . . ,δG,θ1, . . . ,θG), G denotes the number of groups, δg
are membership probabilities, δg > 0, ∑G

g=1 δg = 1, θg =(µg,Σg) are component
specific location and scatter and m◦(y;θg)=∑ j∈Zp m(y+2π j;θ) is the wrapped
density function, where j is the vector of wrapping coefficients and m(·) the
corresponding unwrapped density. Let m◦(y;θg) be the density of a WN distribution
(being m(·) the normal density). Building on mclust, we enforce constraints
on the scatter matrices Σg using the parsimonious models of Celeux & Govaert,
1995 that can be obtained by means of the eigenvalue decomposition of the
covariance matrices of the form Σg = λgDgAgD⊤

g , where λg = [det(Σg)]
1/d ,d =

1,2, . . . , p, is a measure of the volume of the gth cluster, Ag is a diagonal matrix
with the eigenvalues of Σg, with det(Ag) = 1, specifying the shape and Dg is an
orthogonal matrix whose columns are given by the eigenvectors of Σg which
determines the orientation.

In order to make estimation of wrapped models feasible, the infinite sum
over Zp is replaced by a sum over the Cartesian product CJ = ⊗J p, J =
(−J.,−J +1, . . . ,0, . . . ,J −1,J), for some J providing a good approximation.
Then, maximum likelihood estimation of the model in (1) follows from the
maximization of the mixture log-likelihood function.

ℓ(τ) =
n

∑
i=1

log f ◦(yi;τ) =
n

∑
i=1

log

[
G

∑
g=1

δg ∑
j∈CJ

m(y+2π j;θg)

]
. (2)

The operations of mixing and wrapping commute, and (2) can be rewritten as

ℓ(τ) =
n

∑
i=1

log

[

∑
j∈CJ

G

∑
g=1

δgm(y+2π j;θg)

]
=

n

∑
i=1

log f (yi +2π j;τ)

where f (y+2π j;τ) is a mixture density for linear data.
Observe that the wrapping coefficients j are unknown. Then, they can be

considered as latent variables and the observed torus data y as being incomplete.
In the following, maximum likelihood estimation relies on a data augmentation
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approach and is performed according to a suitable Classification Expectation
Maximization algorithm. The point is that there are two sources of incompleteness
in (2): one given by the wrapping coefficient vectors, the other from group
memberships. The proposed algorithm iterates between an outer Classification
Expectation (CE) step, in which the circular data are unwrapped to fitted linear
data x̂ = y+2π ĵ (see Nodehi et al., 2021), and an inner run of a classical EM
algorithm for (linear) finite mixtures using the fitted linear data. Actually, the
algorithm maximizes the (approximated) classification log-likelihood function
based on the complete torus data (y, j):

ℓc(τ) =
n

∑
i=1

∑
j∈CJ

vi j log

[
G

∑
g=1

δgm(yi +2π j;θg)

]
, (3)

where vi j = 1 or vi j = 0 according to wheter yi has j ∈CJ as wrapping coefficients
vector.

Formal approaches to infer the number of clusters and select the best model
among the available parsimonious alternatives can be based on the value of the
penalized complete log-likelihood function (3) at convergence or, alternatively,
of the incomplete data log-likelihood function (2). Classical model selection
criteria are given by the Bayesian Information Criterion (BIC) or the integrated
complete-data likelihood criterion (ICL).

3 A numerical example

Let us consider a synthetic data example to illustrate the proposed methodology.
The sample size is n = 500. Data have been generated according to a bivariate
WN mixture model with two components and unbalanced memberships probabilities,
imposing an EII covariance structure. Starting values are driven from cluster-
wise constrained maximum likelihood estimation under the assumed model
from an initial partition obtained using the angular separation distance and the
Ward agglomerative method. The BIC selects the right model, in this example.
Cluster assignments are plotted in Figure 1. Tolerance ellipses are also given,
based on the normal model. Note that the data have been represented on a flat
torus, that is the same data structure repeats itself on the Euclidean space to
account for the wraparound nature of the data. i.e. data are represented for
different js. The procedure has been repeated 500 times. The model EII has
been correctly selected in 95.6% of the simulations. The average Adjusted
Rand Index (ARI) between the inferred partitions and the true component
memberships is 0.963.
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Figure 1. Cluster assignments and tolerance ellipses under the EII model.
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ABSTRACT: In this work, we propose a novel use for neural networks to build so-
cioeconomic indicators, encoding a possible large information set, within single or
multiple synthetic indexes, we call this proposal AutoSynth. In particular, we encode
such information using an autoencoder, a neural network method to represent in a
lower dimensionality space a matrix of features. We apply such a method to the eval-
uation of socio-economic developments of suburban areas in Florence, and we test the
performance of our model against some golden standard methods using a stress test.

KEYWORDS: synthetic indicators, composite indicators, autoencoders, neural net-
work, unsupervised learning

1 Introduction
Composite indicators are statistical measures that combine a set of elementary
(or individual) indicators into a single measure of a complex phenomenon,
such as the Human Development Index(HDI) or the Environmental perfor-
mance index (EPI). See Commission et al., 2008 for an account on the con-
struction of synthetic indicators. Recently, Greco et al., 2019 presents a review
of the existent literature, focusing on the main goal of indicators construction
and on the open challenges. The primary goal of a synthetic indicator should
be the transmission of the information contained into each elementary indica-
tor, with the lowest possible loss of such data. Moreover, such indicators rely
on making transparent ranking that allows for spatial and temporal comparison
between units and therefore are particularly suited to keep track of improve-
ments in complex phenomena. With wider and more detailed sources of in-
formation, larger datasets are employed and feature extraction techniques are
needed for accounting the amount of information that is considered. Golden
standard approaches employ weighted averages or geometric averages to ex-
tract a single index from a matrix. An example is the Adjusted Mazziotta-
Pareto index (AMPI) Mazziotta & Pareto, 2018, a novel synthetic indicator
for measuring well-being. These methods are very transparent, yet it is not



508

completely clear what should be the weights accounted for, and often strong
theoretical knowledge is required. This task could become very difficult in
presence of large datasets, where describing the relationships between vari-
ables could be cumbersome. Unsupervised learning approaches for construct-
ing composite indicators have been deployed during the last 30 years, such as
Principal Component Analysis and Factor Analysis, see Greco et al., 2019 and
Commission et al., 2008 for some review and comments. In this work, we
propose a novel unsupervised framework for developing synthetic indicators.
Exploiting modern methods for data analysis, we perform a data compression
within a single index, with the minimum loss of information compared to pre-
vious approaches. We employ autoencoders based on neural networks that are
able to grasp the relevant information in the dataset, even in presence of large
datasets and without a backing theory. We apply this estimator to the evalua-
tion of wellbeing in the suburban areas of Florence, and compare results from
our methods with ones coming from previous approaches.

2 Methodology
Let X be a N ×K normalized matrix of covariates, describing socioeconomic
phenomena , observed for N units and K covariates. An autoencoder (Hin-
ton & Zemel, 1993) is a type of neural network that consists of an encoder
and a decoder, where the encoder maps the input data to a lower-dimensional
latent space and the decoder maps the latent representation back to the origi-
nal data space. The encoder can be seen as a probabilistic mapping function
that generates a probability distribution over the latent variables, given the in-
put data, Kramer, 1991 call it as nonlinear PCA, which is a quite familiar
method into syntetic indexes literature. Therefore, let be φ an encoder function
that maps XN×K → RN×1, and similarly let ψ be a decoder function mapping
RN×1 → XN×K . Thus the autoencoder is trained to minimize

argmin
φ,ψ

||X−ψ(φ(X))||2

In our application, as we wish to summarize covariates into a single vec-
tor, we are interested in calculating the code R = φ(X). See figure 1 for a
graphical representation. To assess AutoSynth performances we study stress

values. Let θ =

√
∑i< j(di j−δi j)2

∑i< j d2
i j

be a stress measure of the discrepancy between

the distances in the original high-dimensional space (di, j) and the distances in
the lower-dimensional space (δi, j). Thus, The lower the value of θ, the higher
the ability of the low-dimensional variables in representing the original data.
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Figure 1: Basic scheme of autoencoders. In this application, inputs will be elemen-
tary indicators of socio-economic development, while the code will be the synthetic
indicator

Table 1: Fragility dimensions of Florence - year 2021
Demographic Economic Social
% of elders in the population % of inhabitants in poverty % of minors in single-parent families
Natural balance % of families in poverty % of elders living alone
5-yr variation of inhabitants % of rented residents % of foreigners minors

Median family income % of graduates
Permanent residents

3 Measuring Florentine fragilities
We applied our proposed method to the evaluation of fragilities into Florentine
suburbs. Fragility can be represented into a composite indicator of three main
dimensions: demographic fragility, economic fragility and social fragility. More-
over, we can identify some elementary indicators, previously used in this lit-
erature, to represent each of these dimensions. Table 1 shows the indicators
used in the analysis, referred to 2021. In total, we collect information over the
74 suburbs that make up Florence. Using the elementary indicators in table
1, we first normalize the variables, as in Mazziotta & Pareto, 2018, and later
we apply on the same dataset, AMPI, PCA and AutoSynth transformations,
rescaling the compressed variables to the same ”goalposts”, as in Mazziotta
& Pareto, 2018. Figure 2 and table 2 reports the fragility maps and the stress
value for the three methods considered. From these results, we notice that our
model has very noticeable performances in representing the input covariates,
and thus is able to reproduce better the original dimensions into a single feature
space.

4 Conclusion
Concluding, In this work, we propose to use Autoencoders to construct a syn-
thetic indicator for socio-economic development and apply it to the evaluation



510

dex for FlorenceFigure 2: AMPI, PCA and AutoSynth Fragility Ind

TTaable 2: Stress absolute values for each method considered and as fraction of the
AMPI stress test

AMPI PCA AutoSynth
θ 0.03497 0.00657 0.00447

1 0.188 0.128
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of fragility in the Florence suburbs. Results obtained from the stress values
suggest an improved ability in dimension reduction, nevertheless, the maps
comparison shows similar results with respect to the AMPI. Considering the
wide flexibility of autoencoders, thheir application to the construction of syn-
thetic indicators could become a promising area of study.
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ABSTRACT: This paper presents the generalized Hausman test to detect non-normality
of the latent variable distribution in unidimensional Item Response Theory (IRT)
models for binary data. The test is based on the estimators resulting from the two-
parameter IRT model, that assumes normality of the latent variable, and the semi-
nonparametric IRT model, that assumes a more flexible latent variable distribution.
The performance of the test is evaluated through a simulation study, including the
cases where the latent variable is generated from a skew-normal and mixture of nor-
mals. The results highlight the good performance of the test when the latent variable
is generated from a mixture of normals and from a skew-normal only with many items
and large sample sizes.

KEYWORDS: generalized Hausman test, SNP-IRT model, binary data

1 Introduction

In unidimensional IRT models for binary data, the latent variable is typically
assumed standard normally distributed. However, assuming normality in the
model when the true latent variable distribution has a different shape than the
normal one can result in large biases in parameter estimates (Ma & Genton,
2010). IRT models that assume different form of the latent variable have been
proposed (for example Irincheeva et al., 2012) but detecting latent variable
non-normality through a statistical test remains an open issue. In this paper,
we consider the generalized Hausman (GH) test (White, 1982) to detect non-
normality of the latent variable distribution in unidimensional IRT models for
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binary data. The test is based on the maximum pairwise likelihood (PL) es-
timator (Lindsay, 1988) of the classical unidimensional IRT model for binary
data, based on the normality assumption of the latent variable, and the quasi-
maximum likelihood (ML) estimator of the unidimensional seminonparamet-
ric (SNP)-IRT model for binary data, that assumes a more flexible latent vari-
able distribution (Irincheeva et al., 2012). Some preliminary results on the
performance of the GH test have been presented in Guastadisegni et al. (forth-
coming). In details, the GH test has shown a good performance in terms of
Type I error rates with many items and large sample size. The power of this
test has only been evaluated when the latent variable is generated from a mix-
ture of normals. In this paper, we evaluate the performance of the GH test also
when the latent variable is generated from a skew-normal distribution.

2 The IRT models for binary data

Let y1, ...,yp denote a set of observed binary variables/items, n the number of
individuals and z the latent variable with density function h(z). The response
probability for the i-th individual to the j-th item is modelled using a logistic
model (measurement model)

P(yi j = 1|zi) = πi j(zi) =
exp(α0 j +α1 jzi)

1+ exp(α0 j +α1 jzi)
, (1)

where α0 j is the item intercept and α1 j the item slope. For the classical IRT
model, h(z) = φ(z), where φ(z) is the density of a standard normal. For the
SNP-IRT model, the latent variable has the following SNP parametrization
(Irincheeva et al., 2012)

h(zi) = P2
L(zi)φ(zi) PL(zi) = ∑

0≤l≤L
aizl

i. (2)

a0, ...,aL are the real coefficients of the polynomial PL(zi) and L is the poly-
nomial degree. SNP1 denotes the model for L = 1, where PL(z) = a0 + a1z,
a0 = sinϕ1, a1 = cosϕ1, −π/2 < ϕ1 ≤ π/2. SNP0 denotes the model for L = 0,
where the distribution of the latent variable reduces to the normal one. To im-
plement the GHT test, we consider the SNP0 and the SNP1 model.

3 The generalized Hausman test

Consider the maximum PL estimator η̃SNP0
of the SNP0 model, that includes

the item intercepts and slopes of dimension 2p×1, where p is the number of
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items. Under normality of the latent variable distribution, the maximum PL
estimator η̃SNP0

converges in probability to the true parameter value η0. Con-
sider also the quasi-ML estimator θ̂′

SNP1
= (η̂′

SNP1 , ϕ̂1) of the SNP1 model, of
dimension (2p+1)×1. Under normal, multi-modal and asymmetric distribu-
tions of the latent variables and if the regularity conditions A2-A6 of White
(1982) are satisfied, the quasi-ML estimator θ̂′

SNP1
= (η̂′

SNP1 , ϕ̂1) converges to
θ′

0∗ = (η′
0,ϕ1∗), where ϕ1∗ is the value of ϕ1 that minimizes the Kullback-

Leibler information criterion. The GH test is defined as

GH = (η̂SNP1
− η̃SNP0

)′Ŝ(η̃SNP0
, θ̂SNP1)

−1(η̂SNP1
− η̃SNP0

). (3)

Details on the computation of the matrix Ŝ(η̃SNP0
, θ̂SNP1) can be found in Guas-

tadisegni at al. (forthcoming). Under normality of the latent variable distri-
bution, the GH test is asymptotically distributed as a χ2

2p, where 2p are the
degrees of freedom. To avoid the inversion of the matrix Ŝ(η̃SNP0

, θ̂SNP1) that
is numerically unstable, we consider the following statistic

GHT = (η̂SNP1
− η̃SNP0

)′(η̂SNP1
− η̃SNP0

). (4)

Under normality of the latent variable distribution, GHT ∼ aχ2
b, where a =

∑d
l=1 λ2

l
∑d

l=1 λl
and b =

(∑d
l=1 λl)2

∑d
l=1 λ2

l
, d is rank of Ŝ(η̃SNP0

, θ̂SNP1) and λ1, ...,λd are its non-
zero eigenvalues.

4 Simulation study and results

The optimization of the SNP1 model is achieved in R with direct maximization
via the function “nlminb”, that uses analytically computed gradient and Hes-
sian matrix, while the SNP0 model via the function “optim”. We consider the
following simulation conditions: number of items (p = 4,10,20), sample size
(n = 500,1000), 500 replications for each condition and α = 0.05. Data are
generated from a 2-PL model with the following latent variable distributions:

A z ∼ N(0,1)
B z ∼ 0.7N(−1.5,0.6)+0.3N(1.5,0.5), where z has an overall mean equal

to -0.6 and variance equal to 2.217.
C z∼ SN(µ= 0,σ= 2.5,λ= 10), where z has mean 1.98 and variance 2.31.

Table 1 presents Type I error rates and power of the GHT test for scenarios A, B
and C. Overall, under scenario A, the GHT test has good performance in terms
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Table 1. Type I error rates and power of the GHT test for scenarios A, B, and C,
p = 4,10,20, n = 500,1000.

Type I error Power
p n A B C
4 500 0.016 0.796 0.03

1000 0.086 0.92 0.234
10 500 0.018 1 0.388

1000 0.044 1 0.59
20 500 0.056 0.986 0.744

1000 0.06 1 0.918

of Type I error rates when the sample size is large and in general with many
items. Under scenario B, the power of the GHT test is high for most conditions.
However, under scenario C, 4 and 10 items, the GHT test has low power to
detect non-normality of the latent variable distribution. It reaches a high power
only with 20 items and large sample sizes. The low power of the test under
scenario C can be due to the following reasons. First, the SNP1 model does not
approximate very well the skew-normal distributions (Irincheeva et al., 2012).
Second, the skew-normal distribution used in the simulations has a very high
mean and this has a negative impact on the estimation of parameters.
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ABSTRACT: We propose to measure the importance of variables when running a clus-
ter analysis by measuring the similarity of a clustering using all variables with a clus-
tering applying the same method leaving out one variable. If the resulting clustering
is very similar, the left out variable does not have much impact. An alternative is
to replace the variable by randomly permuted values. Beyond variable selection (on
which we will not focus), variable importance measurement is useful for interpreting
and understanding a clustering. Also we will use variable importance measurement
to discuss whether clustering methods appropriately balance the impact of different
variables in mixed type variables clustering

KEYWORDS: variable importance, adjusted rand index, permutation, mixed type vari-
ables clustering.

1 Introduction

The quantification of variable importance in cluster analysis is of interest in
order to interpret and understand the impact of the variables on a clustering,
and potentially also for variable selection.

Consider a data set of n observations X=(x1, . . . ,xn) with xi =(xi1, . . . ,xip),
i = 1, . . . ,n, where xi j ∈ X j. j = 1, . . . , p, where X j is the sample space for
variable j, with potentially different X j for different j. Let Xj = (x1 j, . . . ,xn j)
denote variable j. As clusterings, we consider partitions C = (c1, . . . ,cn) of
a data set with n observations, where ci ∈ {1, . . . ,k} indicates the cluster to
which xi belongs, with k = maxC the number of clusters. k is not necessarily
known or fixed. Let C denote a general clustering (partitioning) method so that
C(X) ∈ {1, . . . ,k}n.
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2 Variable importance by leaving a variable out

In a case study regarding socioeconomic stratification based on mixed type
(i.e., continuous, ordinal, categorical) variables, in order to assess the impor-
tance of the various variables for clustering, Hennig & Liao, 2013 re-ran their
clusterings with each variable left out, and they computed the adjusted Rand
index (ARI; Hubert & Arabie, 1985) between the clustering with one variable
left out and the clustering based on the full data. The ARI takes the value of 1
if clusterings are identical and a value around 0 (that can in principle be neg-
ative) if clusterings behave like unrelated random draws of cluster labels; the
closer to 1 the ARI, the more similar the clusterings.

Formally: Let X− j = (x− j
1 , . . . ,x− j

n ), where x− j
i = xi with xi j left out. Let

IC,X( j) =ARI(C(X),C(X− j)) be the inverse variable importance of j. The
interpretation regarding variable importance is that if IC,X( j) is large, i.e., close
to 1, the variable importance is low (therefore “inverse”), because it means that
leaving out variable j reproduces pretty much the same clustering. A low value
of IC,X( j) means that leaving out variable j changes the clustering a lot, i.e.,
Xj has a large impact.

This principle of measuring variable importance can be applied to general
clustering methods, and in fact clusterings generated by different methods on
the same data can be compared regarding the importance they give to the dif-
ferent variables. This can be particularly interesting when clustering mixed
type variables data, as it is a known issue with methods for mixed type vari-
ables that they may balance the different variable types, particularly continuous
and categorical variables, against each other systematically in different ways,
arguably giving too much (or too little) influence to categorical variables in
certain situations (Foss et al., 2019).

It is important to note here that variable importance, measured in this way,
applies to the empirical result of a clustering method. It can be informative not
only about the “true” importance of the variables regarding any supposedly
“true” clustering, but also about the way the different clustering methods treat
the variables. The downside of this is that these two interpretations may be
confounded with each other. This does not seem to be a problem with the
proposed method in particular, but rather a general issue with defining and
measuring variable importance in clustering. The user therefore needs to be
careful when using variable importance measurements for variable selection.
More generally, variable selection in clustering is a hard problem, because
in general the clustering problem is not well defined, and various clusterings
can be legitimate, for potentially different clustering aims, on the same data
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set (Hennig, 2015). This means that there is no unique true set of relevant
variables, rather the user’s choice of involved variables determines the way the
resulting clustering can be interpreted.

3 Variable importance by permutation

Breiman, 2001 proposed a scheme for measuring variable importance in ran-
dom forests. The idea there was to replace a variable by a permutation of its
values. This constitutes an alternative approach for measuring variable impor-
tance in clustering. For a permutation π on {1, . . . ,n}, let X jπ = (x jπ

1 , . . . ,x jπ
n ),

where x jπ
i = xi except that Xj is replaced by Xjπ = (xπ(1) j, . . . ,xπ(n) j). As this

depends on the specific permutation, it is advisable to run m random permuta-
tions (say m = 100) π1, . . . ,πm, and then average ARI-values over the permu-
tations, i.e., define I∗C,X( j) = 1

m ∑m
h=1ARI(C(X),C(X jπh)).

Both of these approaches (leave a variable out, “I”, and permute its values,
“I∗”) have advantages and disadvantages. Advantages of I are:

• The approach is deterministic, fully reproducible, and computationally
simpler.

• It is easy to think of a data set that has a variable left out as “realistic”,
whereas permuting values of variable Xj may lead to combinations with
values of other variables that are unrealistic, due to potential dependence
between variables. It may therefore be seen as irrelevant, in a real situa-
tion, what would be the effect of a permutation of the values.

Advantages of I∗ are:

• Running the clustering method on X jπ is the same as running it on X in
the sense that the variables are the same, whereas for I, C has to be run
on a data set that has a variable fewer.

• We ran many simulations in which data were generated from Gaussian
mixture models, with some variables intentionally generated as noise un-
informative for clustering. The results show that I∗ is clearly better at
distinguishing informative from uninformative variables, i.e., I∗-values
will be larger for the uninformative than for the informative variables
with clearly larger probability than I-values, consistently over a fairly
large number of simulation setups.

This indicates that I∗ is preferable for variable selection and interpretation in
terms of meaningful vs. noise variables, although it may not be preferable for
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investigating the way different methods balance different variables. The most
plausible explanation for the empirically superior performance of I∗ is that
for an informative variable it is worse to be permuted than to be left out, as
permuting will replace good information with bad misinformation that can po-
tentially (if a variable is clearly clustered on its own) actively indicate a wrong
clustering. Therefore permutation makes more of a difference for variables
with strong clustering information than leaving out the variable.

In the presentation we will show simulation results and examples and will
discuss them in some detail.
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ABSTRACT: Quadratic discriminant analysis (QDA) is a widely used classification
technique. Based on a training dataset, each class in the data is characterized by an
estimate of its center and shape, which can then be used to assign unseen observa-
tions to one of the classes. The traditional QDA rule relies on the empirical mean and
covariance matrix. Unfortunately, these estimators are sensitive to label and measure-
ment noise which often impairs the model’s predictive ability. Robust estimators of
location and scatter are resistant to this type of contamination. However, they have
a prohibitive computational cost for large scale industrial experiments. We present a
novel QDA method based on a real-time robust algorithm. We additionally integrate
an anomaly detection step to classify the most atypical observations into a separate
class of outliers. Finally, we introduce the classmap, a graphical display to identify
label and measurement noise in the training data.
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ABSTRACT: When the aim is to evaluate the solution of a fuzzy clustering algorithm,
the computation of the adjusted version of the Rand index requires converting the soft
partitions to hard partitions. Furthermore, in comparing two fuzzy partitions from two
different clustering methods, an external validation index should satisfy two desirable
properties: (i) reflexivity, and (ii) a proper interpretation of correction for agreement
due to chance. In this paper, we show an extension of the commonly used adjusted
Rand index to fuzzy partitions based on normalized degree of concordance.
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1 Introduction

Cluster analysis is a data mining technique that groups units (or objects) into
a finite set of clusters (or groups) based on a distance or a similarity. The
purpose of clustering is to partition the objects into distinct groups so that ob-
servations within each cluster are similar to each other, while observations in
different clusters are different from each other. Many clustering algorithms
have been introduced In literature, and many of the methods do not produce
a partition, but e.g.hierarchies, or posterior probabilities (e.g. model-based
clustering). Furthermore, since groups can be formally seen as subsets of the
entire data set, one possible classification of clustering methods can be done
according to whether the subsets are crisp (hard) or fuzzy (soft). Hard clus-
tering methods are based on classical set theory and restrict each object in the
data set to belong to exactly one cluster. Soft clustering methods allow objects
to belong to several clusters simultaneously, with different degrees of mem-
bership. In contrast to hard clustering, each object has a membership value in
each cluster: the larger the value of the membership value for a given object
with respect to a cluster, the larger the probability of that object being assigned
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to that cluster. An extensive overview of cluster analysis can be found in Kauf-
man & Rousseeuw, 2005, Everitt et al., 2011, Duran & Odell, 2013, Hennig &
Meila, 2015. However, clustering is an unsupervised learning problem since
the aim is to identify a structure in an unlabeled data set. As a consequence, an
important issue in cluster analysis is the evaluation of clustering results. The
procedure for evaluating the goodness of the results of a clustering algorithm is
known as cluster validation. Generally, there are three approaches to assessing
cluster validity involving internal, external, and relative criteria. Internal vali-
dation criteria use the information involving the data set used in the clustering
process (e.g. Silhouette index). External validation criteria evaluate clustering
results by comparing them to an externally known result. Relative validation
criteria evaluate the clustering structure by comparing it to other clustering
schemes, i.e. by varying different parameter values for the same algorithm.
Several external validation criteria have been proposed in the literature to eval-
uate hard or soft clustering algorithms. Among them the most popular indexes
are Rand Index proposed by Rand, 1971 and its corrected versions for fuzzy
partitions (see e.g. Campello, 2007, Frigui et al., 2007, Brouwer, 2009, An-
derson et al., 2010, Hüllermeier et al., 2012). In this work, attention is put on
external validation criteria to evaluate the goodness of fuzzy partitions.

2 The key idea

We think that, in comparing the partitions coming from two, different clus-
tering methods, a good index to be used should satisfy at least two desirable
properties: (i) reflexivity and (ii) a proper interpretation of correction for agree-
ment due to chance. The problem with evaluating the solution of a fuzzy clus-
tering algorithm with the original formulation of the Rand index (RI) is that
it requires converting the soft partitions into hard partitions, thus losing infor-
mation. As Meilă, 2007 and Morey & Agresti, 1984 pointed out, there are
other known problems with RI. It approaches its upper limit as the number of
groups increases; it is extremely sensitive to the number and size of groups
considered in each partition as well as to the overall number of observations
considered; the expected value of RI for two random partitions does not take
a constant value. To overcome these drawbacks, Hubert & Arabie, 1985 has
proposed an adjusted version of RI (ARI) assuming the generalized hypergeo-
metric distribution as the randomness model. Besides the ARI, even the fuzzy
generalizations of the RI proposed by Campello, 2007, Frigui et al., 2007,
Brouwer, 2009, and Anderson et al., 2010 fail to satisfy reflexivity property
and therefore cannot be considered a metric.
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Since we are interested in comparing fuzzy partitions and ARI is still the most
popular measure used for clustering comparison, we show an extension of ARI
to fuzzy partitions. The proposed index, named Adjusted Concordance Index
(ACI), is based on the fuzzy variant of the ARI proposed by Hüllermeier et al.,
2012. These authors based their proposal on the fuzzy equivalence relation
and this allows us to rewrite every partition as a similarity matrix based on the
normalized city block. Thus, the ACI is given by:

ACI =
NDC−NDC

1−NDC
,

where the normalized degree of concordance (NDC) is a direct generalization
of the RI and NDC, is the mean value of the NDC over all the permutations.
Since, NDC(P,Q) = 1−d(P,Q), where P and Q are two fuzzy partitions, the
NDC is the only extension of the RI to the fuzzy partition which fulfills the
reflexivity property that always guarantees that its maximum value is equal to
one.
For further details and comments on ACI, the interested reader may refer to
D’Ambrosio et al., 2021.

3 Conclusion

To evaluate the fuzzy clustering results, the external validation criteria pro-
posed in the literature fail two desiderata: reflexivity, and a proper expecta-
tion. To compare fuzzy clustering algorithms, the adjusted Rand index (ARI),
is commonly used to measure agreement between partitions. Following simi-
lar reasoning to Hubert & Arabie, 1985, we have provided the adjusted version
of the normalized degree of concordance (NDC) index defined by Hüllermeier
et al., 2012. We named it the adjusted concordance index (ACI). It normal-
izes the difference between NDC itself and the point estimate of its expected
value. Since NDC is the only fuzzy extension of the Rand index that possess
the reflexivity property, thus the resulting ACI is itself a reflexive index. In this
regard, our proposal works with any raw fuzzy index, provided that the two
above-mentioned desiderata are satisfied.
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ABSTRACT: In many scientific and practical domains, it is common to have multiple
groups of observations that share the same set of variables but are not independent and
identically distributed. Traditional approaches to learning graphical models from such
data usually assume that the groups correspond to different populations, which may
not hold in many cases. To overcome this limitation, we propose a fused-type graphi-
cal elastic net for joint learning of graphical models from two dependent groups. The
proposed method incorporates a fused-type penalty function that captures the shared
and distinct network structures between the two groups while enforcing symmetrical
constraints. We use elastic net regularization to balance the sparsity and stability of
the estimated network.

KEYWORDS: Elastic net penalty; Gaussian graphical model; Joint graphical model;
Network

1 Literature Review

The previous research has highlighted the significance of graphical models
in statistics and machine learning, offering a powerful tool to model com-
plex relationships among variables based on some local relation between them.
Undirected graphical models, specifically the Gaussian graphical model, have
attracted attention for their ability to represent conditional dependencies be-
tween variables. This graphical model associates a multivariate Gaussian ran-
dom vector with a graph, where the Markov property captures dependencies
through the precision matrix. The relevance of Gaussian graphical models in
diverse applications has been emphasized in the study conducted by Maathuis
et al. (2019). In high-dimensional scenarios, estimating the precision matrix
of a Gaussian graphical model is a fundamental and challenging task. Tra-
ditional statistical methods, e.g. likelihood estimation, are often impractical,
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leading to the emergence of effective approaches based on penalized likeli-
hood estimation. The graphical lasso, independently studied by Yuan & Lin
(2007), Banerjee et al. (2008), and Friedman et al. (2008), incorporates an
L1 penalty term into the log-likelihood function, promoting sparsity in preci-
sion matrix estimation. In situations where obtaining accurate representations
of high-dimensional precision matrices is crucial, ridge regularization has been
employed even without significant sparsity. Ridge regularization adds a Frobe-
nius penalty term to the log-likelihood function, as explored recently by van
Wieringen (2019). Recent studies, including Kovács et al. (2021) and Bernar-
dini et al. (2022), have introduced the elastic net graphical model, which com-
bines the graphical lasso and ridge penalties. The elastic net penalty strikes a
balance between sparsity and precision matrix estimation, offering a versatile
framework for graphical modelling and enhancing the accuracy of estimates.

In addition to the traditional Gaussian graphical model, colored graphical
models introduced by Højsgaard & Lauritzen (2008) impose symmetry condi-
tions on the covariance matrix using permutations. While prior research has
mainly focused on independent groups with disconnected networks, the paired
data analysis considers scenarios where two groups share variables and exhibit
dependence. This analysis allows for the existence of symmetries across the
groups. Building on prior work, our study extends the model proposed by Ran-
ciati et al. (2020) by incorporating graphical elastic net models and symmetries
across two dependent groups with a fused-type penalty function.

In the following section, we probe into the methodology of our proposed
symmetric graphical elastic net method after providing a concise introduction
to the Gaussian graphical model, graphical lasso, and symmetric graphical
lasso.

2 Methodology

Consider the Gaussian graphical model (ZV ,G), where G = (V ,E) denote
an undirected graph and Z ∼ Np(µ,ΣΣΣ) follows a p-variate normal distribution.
The maximum likelihood estimation (ML) is a commonly used approach to
estimate the precision matrix (ΩΩΩ = ΣΣΣ−1). The ML method is formulated as

Ω̂ΩΩ = argmax
ΩΩΩ≻0

{logdet(ΩΩΩ)− tr(SSSΩ)} , (1)

where SSS is the sample covariance matrix based on the observed independent
and identically distributed random with sample size n of ZV . Since the solution
to the optimization problem (1) does not typically exhibit sparsity and may
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not have a solution in high-dimensional cases to address these limitations, the
graphical lasso method was introduced as follows:

Ω̂ΩΩglasso = argmax
ΩΩΩ≻0

{logdet(ΩΩΩ)− tr(SSSΩΩΩ)−ρ||ΩΩΩ||1} , (2)

where ρ > 0 is a tuning parameter, and the L1 norm, || · ||1 is the sum of the
absolute values of the elements.

Ranciati et al. (2020) considered the estimation of the precision matrix
for paired data and order to promote sparsity in the graph structure and en-
courage similarity between the two dependent groups of data. The penalty
encourages equality between the concentration values of relevant subgraphs.
They proposed the symmetric graphical lasso estimator, denoted as sgl, which
is obtained by solving the following optimization problem:

Ω̂ΩΩsgl = argmin
ΩΩΩ

{− logdet(ΩΩΩ)+ tr(SΩΩΩ)+λ1∥ΩΩΩ∥1 +λ2 ∥ΩΩΩ11 −ΩΩΩ22∥1} (3)

where λ1 and λ2 are non-negative regularization parameters controlling the
amount of sparsity. The precision matrix ΩΩΩ is partitioned into four matrices,
with ΩΩΩ11 and ΩΩΩ22 representing the diagonal submatrices. The penalty term L1
encourages sparsity in the estimated precision matrix ΩΩΩ, and the fused penalty
term encourages the elements of ΩΩΩ11 to be identical to the corresponding ele-
ments of ΩΩΩ22.

This paper proposes modifying the optimization problem (3) by replacing
the lasso penalty with an elastic net penalty. The elastic net penalty balances
sparsity and accuracy in estimating the precision matrix. We then develop an
alternating directions method of multipliers (ADMM) algorithm to solve the
newly proposed optimization problem. The corresponding penalty term is as
follows:

αλ1||ΩΩΩ||1 +
(1−α)λ1

2
||ΩΩΩ||2F +λ2||ΩΩΩ11 −ΩΩΩ22||1, (4)

where α ∈ [0,1], λ1 and λ2 are non-negative tuning parameters that control
the sparsity and regularization strength and the Frobenius norm, || · ||F is the
square root of the squared values of the elements.

3 Conclusion

In conclusion, the fused-type graphical elastic net method offers a novel ap-
proach for jointly learning graphical models from dependent groups. The pro-
posed method balances sparsity and stability in estimated networks by incor-
porating a fused penalty function and elastic net regularization.
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COMPLETE RECORDS OVER INDEPENDENT FGM
SEQUENCES
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ABSTRACT: Records are defined as variables greater than all the preceding ones in
a sequence. The stochastic behavior of subsequent records over sequences of inde-
pendent and identically distributed random variables is well known. However, the
extension to the multivariate framework is an extremely difficult task. In this work,
we study the case of bivariate records over sequences of random vectors (rv) where the
dependence among their components is described by the Farlie-Gumbel-Morgenstern
(FGM) family of distributions.

KEYWORDS: complete records, standard max stable distribution, FGM copula.

1 Introduction

The study of multivariate maxima of rv is a challenging topic (see Resnick,
1987, Leonetti & Khorrami Chokami, 2022 among others), but records furnish
a new way to tackle the problem as they give information on how often and
to which extent maxima change. The theory on records is well developed in
the case of independent and identically distributed (iid) sequences of random
variables (see Galambos, 1987 and Falk et al., 2018a). However, as soon as we
relax the iid assumption to better reflect real-world data, the problem becomes
immediately too difficult (we cite Falk et al., 2020 for a study on univariate
stationary Gaussian sequences). Multivariate records are an appealing topic
of research. In Rd , various definitions of records are possible. Here, we
consider the so-called complete record (see Falk et al., 2018b) and consider
operations on vectors to be made componentwise. Let XXX1,XXX2, . . . be iid rv:
XXXn is a complete record (CR) if XXXn > MMMn−1 = max(XXX1,XXX2, . . . ,XXXn−1) and the
appearance of a CR at time n is indicated as Rn := 1(XXXn > MMMn−1).

This paper investigates the difficult problem of describing the appearance
of CRs and their distribution, under the following hypothesis: we know that a
vector is a CR, but we do not know which one. It is still an open problem to
find such results in the case of iid sequences of rv with a general copula. Here,



529

we consider a sequence ηηη1,ηηη2, · · ·∈ R2 of standard max-stable rv (i.e. with
Negative-Exp(1) margins and such that Mn

d
= ηηη1/n) and FGM copula:

F(x,y) = e(x+y) (1+λ(1− ex)(1− ey)) , x,y ≤ 0 and |λ|≤ 1. (1)

The usefulness of this copula lies in its manageable structure and intu-
itive interpretation of the parameter λ to describe dependence, which make the
FGM distribution widely used in capital-allocation applications and in prob-
lems involving order statistics and their concomitants. A complete description
of this copula is in Hashorva & Hüsler, 1999.

2 Complete Records

Theorem 1. Let ηηη1,ηηη2, . . . be a sequence of bivariate standard max-stable rv
with FGM copula. Then, the probability of appearance of a CR is

P(Rn = 1) =
1
n2

(
1+λ

(
n−1
n+1

)2(
1+

(n+1)2 +λ(n−2)2

(2n−1)2

))
(2)

for n ∈ N and the distribution of a rv given that it is a CR is

P(ηηη ≤ zzz | Rn = 1) =
en(z1+z2)

P(Rn = 1)

(
1
n2 +λ

2

∏
i=1

(
2

n+1
ezi − 1

n

)
+ λ

2

∏
i=1

(
1
n
− e(n−1)zi

2n−1

)
+

+λ2
2

∏
i=1

(
1

n+1
ezi − 1

n
− enzi

n
+

e(n−1)zi

2n−1

))
, zzz ≤ 0.

(3)

Proof. Denote with η(i) the i-th component of ηηη. We firstly compute

P(Rn = 1) = P(ηηηn > MMMn−1) = P

(
ηηηn >

ηηη1
n−1

)
= P(ηηη1 < (n−1)ηηηn)

=
∫

(−∞,0]2
P
(

η(1)
1 < (n−1)x,η(1)

2 < (n−1)y | ηηηn = (x,y)
)

f (x,y)dxdy

=
∫

(−∞,0]2
P
(

η(1)
1 < (n−1)x,η(1)

2 < (n−1)y
)

f (x,y)dxdy.

The last equality follows by the independence assumption. Define

I(z1,z2) =
∫ z2

−∞

∫ z1

−∞
P
(

η(1)
1 < (n−1)x,η(1)

2 < (n−1)y
)

f (x,y)dxdy =

=
∫ z2

−∞

∫ z1

−∞
en(x+y)

(
1+λ

(
1− e(n−1)x

)(
1− e(n−1)y

))
(1+λ(2ex −1)(2ey −1)) dxdy,
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and note that I(0,0) = P(Rn = 1). After computations, we obtain

I(z1,z2) = en(z1+z2)

(
1
n2 +λ

2

∏
i=1

(
2

n+1
ezi − 1

n

)
+ λ

2

∏
i=1

(
1
n
− e(n−1)zi

2n−1

)
+

+λ2
2

∏
i=1

(
1

n+1
ezi − 1

n
− enzi

n
+

e(n−1)zi

2n−1

))

and we have

I(0,0) =
1
n2

(
1+λ

(
n−1
n+1

)2(
1+

(n+1)2 +λ(n−2)2

(2n−1)2

))
= P(Rn = 1) .

Equation (3) follows by noticing that, for zzz ≤ 000,

P(ηηηn ≤ zzz | Rn = 1) =
P(ηηηn ≤ zzz,Rn = 1)

P(Rn = 1)
=

P(ηηηn ≤ zzz,ηηη1 < (n−1)ηηηn)

P(Rn = 1)

=
1

P(Rn = 1)

∫

(−∞∞∞,zzz]
P
(

η(1)
1 < (n−1)x,η(1)

2 < (n−1)y | ηηηn = (x,y)
)

f (x,y)dxdy.

The thesis follows by noticing that P(ηηηn ≤ zzz | Rn = 1)= I(0,0)−1I(z1,z2).

Figure 1a represents an example of the cdf of a CR at time 4 given by
Equation (3), when the parameter λ is set to 0.8, while Figure 1b shows the
decay of the appearance of a CR as n increases (from Equation (2)), for various
choices of λ. Note that λ = 0 indicates independence of the components of ηηη.

Remark 1. Let N = ∑∞
n=2 Rn be the number of records after the first vec-

tor (which is the first record by definition). From Equation (2), it holds that
E [N] = ∑∞

n=2P(Rn = 1) < ∞, which implies by the first Borel-Cantelli lemma
that P(Rn = 1i.o) = 0, that is a finite number of records. This is coherent with
Theorem 5.3 in Goldie & Resnick, 1989.

To conclude, this work tackles the problem of studying CRs over iid bivari-
ate sequences of standard max-stable rv with FGM copula, under the hypothe-
sis of not knowing the position of the CRs in their sequence. This approach is
proven to furnish handy results and links with the Extreme Value Theory (see
Falk et al., 2018b and Falk et al., 2020). We highlight that Equation (2) is inde-
pendent of the chosen marginal distribution function of the considered rv (say
FX ), provided that it is continuous, as η = log(FX(X)) in distribution. How-
ever, the distribution of a CR does depend on the marginal distribution. The
extension to CR on sequences with a general copula and unfixed continuous
margins is an ongoing project of the author.
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NEW TOUR METHODS FOR VISUALIZING
HIGH-DIMENSIONAL DATA
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ABSTRACT: Tour methods visualize high-dimensional spaces as animated sequences
of low-dimensional projections. Viewing the projected data allows us to uncover and
understand shapes and patterns in such high-dimensional spaces. Typically we create
this animation by first selecting a target plane, and then we interpolate to gradually
move to the selected target. While several methods for target selection are available
in the R package tourr, it currently only implements geodesic interpolation. Here we
present recent developments in tour methods. We first describe a manual user-guided
control for target selection, that also includes the interactive selection of sections in the
context of a slice tour. We then present a new interpolation method for frame-to-frame
transitions instead of plane-to-plane, important for projection pursuit applications.

KEYWORDS: data visualization, grand tour, dynamic graphics, projection pursuit

1 Introduction

The grand tour (Asimov, 1985) visualizes multivariate data distributions as
animated sequences of interpolated low-dimensional projected views, and by
following such an animation we can build intuition about a data distribution in
a high-dimensional space. We may discover patterns of interest, for example,
clustering, or we can detect outlying points. For a summary of the current
state-of-the-art on tour methods and applications see Lee et al., 2022.

Constructing the animation typically iterates between two steps: first, we
select a target plane onto which the data should be projected (target selection),
and then we compute the interpolated path between the current viewing plane
and the selected target (interpolation algorithm).

Examples of target selection include a random selection (the grand tour,
which provides an overview of the distribution across the full space), and a
selection that optimizes a projection pursuit index (the guided tour (Cook et al.,
1995), which moves towards more “interesting” views of the data). The latter
is important when patterns of interest may be hidden and only visible in a small
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part of a much larger data space. These as well as additional approaches are
implemented in the tourr R package (Wickham et al., 2011).

The interpolation algorithm should then find a path from one target plane
to the next, such that we can view the projected data as a smooth animation
while gradually changing the viewing angle. Importantly each intermediate
step also needs to be defined by an orthonormal projection matrix such that the
data is not distorted in the visualization. The preferred approach is typically a
geodesic interpolation (Buja et al., 2005) which finds the shortest path between
two planes, independent of the orientation of the target frame. This has the
advantage that any within-plane rotation is avoided during the interpolation,
but can limit applications of the guided tour when the considered projection
pursuit index is not invariant to rotation within the plane (Laa & Cook, 2020).

2 Manual tour in Mathematica

With a manual tour, the user can alter the contribution of a selected variable
to the target projection. This is, in particular, useful to interpret patterns found
in one projection, for example through projection pursuit, to understand the
sensitivity of the pattern to the input variables.

The previous approach to the manual tour (Cook & Buja, 1997; Spyrison &
Cook, 2020) was overly complicated since it requires the construction of a ma-
nipulation space as an intermediate step. Here we present a simpler approach
described in Laa et al., 2023. The new method uses the interactive graphics
interface available in Mathematica, for illustration, we show a screenshot in
Fig. 1. We can manually change the projection by dragging one of the vari-
ables in an axes display of the projection matrix. The main part of the display
shows the projected data (or slices of it, defined according to Laa et al., 2020),
tracking changes to the projection matrix while ensuring its orthonormality.

In the presentation, we will show an example of how the new approach can
be used for a detailed inspection of a fitted classification model, by comparing
the decision boundaries generated by two different models.

3 Alternative interpolation methods

We need an alternative to geodesic interpolation for a guided tour that is op-
timizing a projection pursuit index that is not rotation invariant. This situa-
tion is illustrated in Fig. 2: the data is simulated to have a functional depen-
dence between two of the variables (V5 and V6). We define an index that
captures functional dependence in the projection: we compute the residuals
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ScrFigure 1. reeenshot of the innterraactive Mathematica manuall tour interface.
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direction (Grimm, 2016). The index value changes dramatically when rotating
within the plane: on the left we see the index taking its maximum value of 1,
while on the right the index value has dropped to 0.26.

Too fffer an alternative interpolation method in those settings we avve im-
plemented a frame-to-frame interpolation based on Givens rotations, as sug-
gested in Buja et al., 2005. The algorithm is available through the R package
woylier. The presentation will give a brief overview of the algorithm and its
implementation. Wee then show how it can be used to improve the results of a
guided tour for the example of exchange rate data.
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ABSTRACT: Political fact-checking can be carried out by crowd workers, provided
they are supervised by experts. We propose a Bayesian latent variable ordinal probit
model for truthfulness rating data, to estimate workers’ reliability, weigh in their con-
tributions, and surrogate expert judgments. This is a notable example of aggregation
function of an implicit type. This method may be used to dynamically assign workers
to new tasks, as illustrated with an analysis of PolitiFact data.

KEYWORDS: Bayesian statistics, judgment aggregation, ordered probit.

1 Introduction

Fact-checking is about assessing the truthfulness of public statements to com-
bat misinformation and improve debates. However, expert fact-checkers are
few, while crowd workers are readily available but potentially biased. There
is a stream of scientific research about how to surrogate expert judgements
by means of workers, after some suitable calibration; see for example Roitero
et al., 2021. Latent traits of statements and workers are at stake, like truthful-
ness and political orientation. Methods from Item Response Theory (see for
example Bartholomew et al., 2011) can be adapted to this end. Here we adopt
a Bayesian approach, which is suitable for the task.

We propose an ordinal probit model for quantitative fact-checking. An ag-
gregation function is involved, which mimics expert judgments via the wisdom
of crowds (Roitero et al., 2021). The truthfulness of statements, even when
encoded as an ordinal variable, is often treated as numeric. This allows to
summarize ratings across workers by means of a simple average, but by using
a generative model there is room for improvement. We argue that, as far as the
aggregation function needs not be explicit, the Bayesian inferential approach
always provides one, namely, the posterior distribution of expert judgments
conditional to workers’. A different proposal, with some similarities, exists in
the literature (Nguyen et al., 2018).
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2 Model

Let i = 1, . . . ,n and j = 1, . . . ,m be two indices to identify statements and
workers, respectively. The truthfulness of statement i is rated as Zi = 1, . . . ,k
by a single expert and as Wi j = 1, . . . ,k by worker j ∈ Ci, with Ci a subset of
workers that evaluate statement i. The aim is to predict Zi through (Wi j) j∈Ci .

As typical in ordinal regression models, we think of Zi as the observed
discretization of a latent numeric variable Z∗

i , which is defined as

Z∗
i = σξ ξi + εi , ξi, εi ∼ N (0,1) .

Here, εi is a noise term, ξi is the truthfulness of the i-th statement and σξ > 0
is a signal strength parameter. Analogously, we think of Wi j as the observed
discretization of a latent numeric variable W ∗

i j, which is defined as

W ∗
i j = α j +β jξi +ηi j , α j ∼ N (0,σ2

α) , β j ∼ N (0,σ2
β) , ηi j ∼ N (0,1) .

Here, ηi j is a noise term, while α j and β j are worker-specific parameters that
affect their judging behavior. The worker-specific parameters α j and β j ac-
count for correlation within workers. All the terms ξi,εi,α j,β j,ηi j are as-
sumed independent. Lastly, we define two sets of thresholds (γh)k

h=0 and
(δl)k

l=0 constrained as γ0 = δ0 = −∞, γh < γh+1, δl < δl+1, γk = δk = +∞,
such that

γh−1 <W ∗
i j ≤ γh ⇐⇒ Wi j = h , δl−1 < Z∗

i ≤ δl ⇐⇒ Zi = l .

Probit models are implied for Zi and Wi j. As an original proposal, parame-
ters α j and β j allow to represent the alignment with the experts. The model
specification is then completed by assigning weakly informative priors to scale
parameters and uniform priors on thresholds.

3 Example

We analyse a publicly available dataset (Roitero et al., 2020), which includes
expert ratings obtained from PolitiFact. Data relate to m = 100 workers and
n = 62 public statements on COVID-19. The truthfulness ratings Zi and Wi j
have k = 6 levels, labeled as: “pants-on-fire”, “false”, “mostly-false”, “half-
true”, “mostly-true” or “true”. There were eight statements per worker and ten
workers per statement, but two gold statements were rated by all the workers
for control purposes. Gold statements have either Zi = 1 or Zi = k, while all
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ABSTRACT: In this paper we contribute to the functional data analysis literature by
presenting a scalar-on-function penalized regression model with a multinomial re-
sponse variable which takes into account possible information given by the phase
variability. We also providing a practical application on neuromarketing data.

KEYWORDS: functional data, high-dimensional data, machine learning, sparse infer-
ence, supervised learning classification

1 Introduction

In recent decades, functional data analysis has played an increasingly impor-
tant role in various scientific field, such as medicine, biology, engineering, and,
above all, in the field of statistical research (see Ramsay & Silverman, 1997,
Hsing & Eubank, 2015, Koner & Staicu, 2023 for some reference review).
In this paper, we consider an application to neuromarketing data. Neuromar-
keting (Fisher et al., 2010) is the application of neuroscientific methods to
understand and analyse human behaviour in relation to markets and business
needs. On the basis of different neurometrics, obtained by EEG recordings,
taken on a sample of subjects while watching positive, negative, and neutral
valence videos, to measure the α-asymmetry of the brain (a condition indicat-
ing the subject’s attention to what he or she is observing, see Mazza & Pagano,
2017), the proposed methodology in this article aims to classify the valence
of the video observed. The remaining part od this paper is organized as fol-
lows: in Section 2 we explain our proposal; in Section 3, the results obtained
by analyzing the data introduced above are illustrated; Finally, conclusions are
provided in Section 4.
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2 Proposed model

Notation and definitions. By functional data, we mean a realization of a
stochastic process. The functional data, i.e. the predictor, is modelled as:
fitk = fi(tk)+ εitk , with fi ∈ F , where tik is the k-th time point detected on the
i-th subject, with domain [0,1], εitk is an error term normally distributed, and
fitk is an element of L2

[0,1], where L2
[0,1] denotes the space of square-integrable

functions endowed with the standard inner product ⟨g1 , g2⟩=
∫ 1

0 g1 (t)g2 (t) dt
and associated norm ∥g∥ = ⟨g , g⟩ 1

2 . Let us denote by Yi, for i = 1, . . . ,n, a
random variable distributed according to a Multinomial distribution, such that
Yi ∈{− 1,0,1} . Finally, by γ we denote a diffeomorphism, (warping function),
belonging to the set Γ = {γ : [0,1]→ [0,1] | γ(0) = 0,γ(1) = 1} .

The propose model. The multinomial scalar-on-function regression model,
belonging to the class of FGLM (James, 2002), takes the following form

log
{

Pr (Yi = g | fitk)

Pr (Yi = 0 | fitk)

}
= ηig = β0g + ⟨ fi , βg⟩, (1)

where β0g is the intercept of the g-th group and βg ∈ L2 (t) is the regression
coefficient function. Usually, for classification purposes, the phase variability
of functional data is not taken into account, making it unitary during the pre-
processing step through time warping (Ramsay & Silverman, 1997). However,
as some authors show, (e.g., see Tucker et al., 2013) phase variability may
contain useful information for classification purposes. In this setting, time is
expressed as tik = γi (tk), where γi ∈ Γ is the warping function. Hence, the func-
tional predictor to be used in (1) is expressed in a new re-parametrization of
time as fitk = fi (γi (tk)) = f̃i (tk), where f̃i (tk) ∈ L2

[0,1] which only contains in-
formation on amplitude variability. Therefore, to use both phase and amplitude
variability for our prediction problem, model (1) becomes

log
{

Pr (Yi = g | fitk)

Pr (Yi = 0 | fitk)

}
= β0g + ⟨ f̃i , βg⟩+ ⟨γi , θg⟩, (2)

where ⟨γi , θg⟩ is the term contain information on the phase variability. Assum-
ing that, both f̃i and γi are zero mean functions, and using by Karhunen–Loève
expansion (Hsing & Eubank, 2015), i.e., f̃i (t) = ∑+∞

j=1 Xi jφ f
j (t), and

γi (t) = ∑+∞
l=1 Zilφγ

l (t) . Model (2) can be expressed as follow:

ηig = β0g +
p

∑
j=1

Xi j⟨φ f
j , βg⟩+

q

∑
l=1

Zil⟨φγ
l , θg⟩, (3)
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where Xi j and Zil are the scores, obtained by FPCA. In our application we use
the PACE method (Yao et al., 2005). The model becomes a classic multinomial
regression model on scores, in which there are high dimensionality problems
due to the choice of the number of basis by which to approximate both f̃i and
γi. To overcome the problems from the high dimensional setting, we propose to
minimize the penalised log-likelihood function lλ (b) = l (b)+nλP(b), where
b denote a vector of parameters for both amplitude and phase variability terms,
whereas λ is the tuning parameter and P(b) is the Elastic-Net penalty function
(Zou & Hastie, 2005), i.e.: P(b) = α∥b∥1 +

(1−α)
2 ∥b∥2

2.

3 Application to Neuromarketing Data

The sample consists of n = 60 subjects who participated to a study, in which
each subject was shown a video having positive, neutral, or negative valence.
Through EEG signals, two indices, BIS and BAS (Davidson et al., 1990),
were obtained capable of capturing whether the subject showed attention when
viewing the video. In the preprocessing step, all the curves were aligned. Sub-
sequently, four separate FPCAs for each indicator and related warping func-
tions were made to obtain the scores.

Table 1. Hyper parameter values and model performance metrics on test set.

α λ Accuracy Precisiona Recalla
0.9797 0.0045 0.933 0.944 0.933

a Macro average was used

Table 1 shows the selected hyper-parameter: the selected α parameter allowed
for a very selective model, which leads to a Lasso-type penalty function, how-
ever, the selected λ value is close to zero. Again Table 1 shows how the model
achieves almost perfect classification ability on the test set, and thus excellent
generalization ability.

4 Conclusions

The proposed approach allows the extraction and selection of relevant signals
for classification, also taking into account the possible information of phase
variability through a specific term in the linear predictor. The results show in
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Section 3 highlight that the proposed model has achieved an excellent degree
of generalization.
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ABSTRACT: Latent class models rely on the conditional independence assumption,
i.e., it is assumed that the categorical variables are independent given the cluster
memberships. Within the Bayesian framework, we propose a suitable specification
of priors for the latent class model to identify the clusters in multivariate categorical
data where the independence assumption is not fulfilled. Each cluster distribution
is approximated by a latent class model, leading overall to a two-layer mixture of
latent class models. By carefully specifying the priors on the model parameters, the
Bayesian approach allows to identify the clusters and fit their cluster distributions
using MCMC sampling. We provide suitable estimation and inference methods for
the mixture of latent class models and illustrate the performance of this approach on a
real data set containing patients suffering frome one of three types of low back pain.

KEYWORDS: Bayesian inference, model-based clustering, prior on the number of
components, telescoping sampler
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ABSTRACT: This work introduces a composite Three-Way application of the High
Order Singular Value Decomposition. Two of the three component data matrices are
processed by a standard Redundancy Analysis. The remaining “external” data matrix
is related to the others in a heterogeneous system of relations, that can be well suited
to tensor analysis. The external data are set to be linked with the first matrix, while
with the second matrix the relations are explained only through multivariate linear
regression. An application introduces the method, based on the official data from the
Italian Equitable and Sustainable Well-being indicators.

KEYWORDS: Tucker decomposition, high order singular value decomposition, re-
dundancy analysis.

1 Introduction and background

Tensor decomposition (Kolda & Bader, 2009) has the main objective of re-
ducing complex information detected by higher dimensional arrays of data.
From a pure statistical perspective, there are two important exploitations of
the tensor analysis: the Candecomp/Parafac decomposition and the Tucker de-
composition. They play the role of the extension to tensor objects of the prin-
cipal component analysis (PCa), recognized as an explorative way to approach
multidimensional information (Kroonenberg, 2008). In the literature, the most
popular tensor decompositions are “Canonical Decomposition” and the “High
Order SVD” (HOSVD, De Lathauwer et al., 2000). The HOSVD decomposes
an N-mode tensor, as a multidimensional array, in a core reduced-order tensor,
multiplied by component matrices alongside each of the N modes. Three-way
PCa was the first extension of the PCa to a three-way data set, giving the first
useful employment of tensor analysis to explorative statistical analysis. In
standard PCa, the components that come from the SVD that summarize indi-
viduals are uniquely related to the components that summarize variables. In a
three-way PCa the components that summarize entities in each of the modes
are related with the remaining two. Redundancy Analysis (RDA, Legendre
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and Legendre, 2012) was originally introduced in order to capture the effect
onto a reduced space ŶX = XB̂ of the linear dependence by a set of criterion
variables Y from a set of predictors X, where B̂ is the matrix of the ordinary
least squares multivariate regression estimates. RDA provides a constrained
analysis of the whole linear relations between the two sets of variables, and
an unconstrained analysis given by the set of multivariate regression residuals.
It can be considered as an extension of multivariate regression because mod-
els the effects of the explanatory variables on a response matrix. Partial RDA
(pRDA) explores the effects of the predictors in X on the Y variables, given
the covariates of some additional exploratory variables in a matrix Z. It is a
standard RDA performed taking into account the X variables as predictors on
Y− ŶZ , with the “effect” by Z removed. Nevertheless, the relations between
the variables Y and Z may be quite several. While remaining the same the role
of the predictors X on Y, a third set of variables Z may be related and depend
on Y, by an existing but not well defined dependence. Thus, applying multi-
variate regression may result hardly appropriate. Variables in Z in some cases
can not be modeled on Y as predictors in a multivariate regression, while X
predict Y and, indirectly through Y, the variables in Z. Residuals Y− ŶX may
take in account the role of X in the “indirect” explanation of Z. This is some-
what different from pRDA, because Y is not regressed on Z, as the external set
of covariates from which we remove the effect on Y, and also Z is not related
with Y through linear regression. Given a 3rd-order tensor X ∈ RI×J×K , the
Tucker decomposition through the HOSVD decomposes the tensor X into a
core tensor G and factor matrices along each mode, as follows:

X ≈ G×1A×2 B×3 C

with the correspondent elementwise expression xi jk=∑R
r=1 ∑S

s=1 ∑T
t=1 grstairb jsckt ,

with i= 1, ..., I, j = 1, ...,J,k = 1, ...,K. The factor matrices are columnwise or-
thonormal, A= [a1, ...,aR], B= [b1, ...,bS],C= [c1, ...,cT ], with r = 1, ...,R,s=
1, ...,S, t = 1, ...,T . The matricized forms, one per mode, of the 3-way tensor
X are:

X(1) ≈ A(C⊙B)′ = AG(1)(C⊗B)′,
X(2) ≈ B(C⊙A)′ = BG(2)(C⊗A)′,

X(3) ≈ C(B⊙A)′ = CG(3)(B⊗A)′,

with the symbols ⊙ and ⊗ that are the Khatri-Rao and Kronecker products,
respectively. If rR(X ) is the rank of the tensor X alongside one of the modes,
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Table 1. Description of the variables used for the application

Variables Description

S8 Age-standardised mortality rate for dementia and nervous
system diseases

IF3 People having completed tertiary education (30-34 years old)
L12 Share of employed persons who feel satisfied with their work
REL4 Social participation
POL5 Trust in other institutions like the police and the fire brigade
SIC1 Homicide rate
BS3 Positive judgement for future perspectives
PATR9 Presence of Historic Parks/Gardens and other Urban Parks

recognised of significant public interest
AMB9 Satisfaction for the environment - air, water, noise
INN1 Percentage of R&D expenditure on GDP
Q2 Children who benefited of early childhood services
BE1 Per capita adjusted disposable income
LBE1 Logarithm of Per capita adjusted disposable income

the HOSVD may uses Alternating Least Squares, in order to find:

min
G ,A,B,C

∥∥X −G×1A×2 B×3 C
∥∥ .

Making the substitutions A = Y, B = Y− ŶX , C = Z, with I = J = K = n, R =
S = r(Y) = r(Y− ŶX), and T = r(Z), we achieve the desired result, by finding
a Three-Way version of the ”indirect” RDA, with the proper data matrices.
Like in the standard RDA, the data in Y, X, and Z have to be preprocessed by
centering and standardazing their column vectors. This is requested before the
application of the RDA of Y on X.

2 Application study

The Equitable and Sustainable Well-being indicators (BES) are designed to
define the economic policies which largely act on some fundamental aspects
of the quality of life. Table 2 reports the description of these indicators. We
use the latter as the predictor variable in the RDA that gives the constrained
analysis in the subspace of ŶX . Table 2 reports the correlation matrix between
the column vectors of Y, Y∗, and Z. Correlations in bold are significant. It
is interesting to remark that in some cases the variables in Z are correlated
with the columns of Y, while they are generally poorly related with the RDA
residuals vectors (given by the unconstrained RDA). In particular, the evidence
is that even if Z may be regressed on Y, for some variables the regression on
X results inappropriate. One of the important cases is shown by the variable
AMB9. This variable (Satisfaction for the environment - air, water, noise) is
permanently correlated with the variable BS3 (Positive judgement for future
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Table 2. Correlations - Matrices Y, Y⋆, and Z
Variable Y1BS3 Y2INN1 Y3IF3 Y4Q2 Y5L12 Y6S8
Z1AMB9 0,4029 −0,0239 0,4570 0,6852 0,8090 0,6926
Z2POL5 0,1906 0,3629 0,2594 0,6395 0,6330 0,5973
Z3PAT R9 0,1800 0,3759 0,0426 0,0353 0,0146 0,2420
Z4REL4 0,5133 0,2601 0,4413 0,7026 0,8380 0,6507
Z5SIC1 −0,2215 −0,1150 −0,4665 −0,5397 −0,5925 −0,6343
Variable Y1⋆BS3 Y2⋆INN1 Y3⋆IF3 Y4⋆Q2 Y5⋆L12 Y6⋆S8
Z1AMB9 0,4605 −0,1075 0,2848 0,1294 0,0423 −0,0119
Z2POL5 0,0042 −0,1972 −0,0523 0,0662 −0,0624 −0,0755
Z3PAT R9 −0,1311 0,2081 −0,2749 0,2794 0,0053 0,1774
Z4REL4 0,3595 −0,0025 −0,0056 0,0993 −0,1227 −0,1229
Z5SIC1 −0,2029 −0,0184 −0,3021 −0,1787 −0,0291 −0,0234

perspectives), whatever is y or y∗ = y−ŷX (with corr(y,y∗) = 0.7293). We
have a moderate correlation between the variable BS3 and the correspondent
RDA residuals, and a moderate explanation of this variable is given by the BE1
(Per capita adjusted disposable income). Then, a tentative conclusion is that
the “Satisfaction for the environment” (a Z variable) does not depend on the
“Disposable income” (the RDA predictor X). An opposite case occurs when
we try to assess the same AMB9 variable, versus L12 (Share of employed
persons who feel satisfied with their work). Even we have that corr(y,y∗) =
−0.2395, AMB9 has the greatest correlation with the observed L12 (y), which
reduces to be not significant in terms of L12 RDA residuals (y∗). Thus, even
the ”Share of employed persons who feel satisfied with their work” depends
on the ”Disposable income”, and the “Satisfaction for the environment” can
be explained by the relation with “People that feel satisfied with their work”,
the “Satisfaction for the environment” depends on the “Disposable income”
through its relation with the “People that feel satisfied with their work”.
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ABSTRACT: Multiplex arises when the network for the same set of nodes is repeti-
tively observed on different layers that can represent, for instance, different statistical
units or different criteria to connect the nodes. A multi-level Stochastic Blockmodel
for multiplexes is introduced to provide a joint clustering of layers and nodes. This is
achieved by considering two different sets of discrete latent variables. A former set
allows us identifying groups of layers sharing similar connectivity patterns. A letter
set of discrete latent variables, nested within the former, allows us identifying groups
of nodes sharing similar relational features. A variational Expectation-Maximization
algorithm is derived for estimation purposes.

KEYWORDS: network data, model-based clustering, finite mixtures, EM algorithm,
variational inference.

1 Introduction

Uncover patterns underlying relations between nodes of a network is a com-
plex task, especially when the network is repeatedly observed on a number of
statistical units, or when different criteria to connect the nodes are available.
For instance, connections between brain regions may be observed on a number
of individuals, or imports/exports between countries may entail different types
of products. In such cases, data provide a multilevel structure and multiplexes
can be effectively used to describe, analyze, and model interactions between
nodes (Barbillon et al., 2017).

Stochastic blockmodels (SBMs - Daudin et al., 2008) represent a valuable
approach for identifying clusters of nodes sharing common relational features.
These are identified by including in the model specification a set of node-
specific, discrete, latent variables inducing nodes’ partitioning. When multi-
plexes are available, one can decide to apply a SBM to each layer of the data
structure, thus obtaining a separate clustering of nodes for each layer. As an
alternative, the multivariate nature of dyadic relations may be properly taken
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into consideration and nodes’ clustering may be defined by fully exploiting the
richness of the data at hand (Barbillon et al., 2017).

We introduce a specification of the SBM for multiplexes that allows us to
obtain a clustering of both layers and nodes. In detail, we introduce a multi-
level SBM where layer-specific, discrete, latent variables allow us to cluster
layers (i.e., the statistical units) sharing similar connectivity patterns. Within
each of such clusters, nodes characterized by similar relational features are
clustered by means of a further set of node-specific, discrete, latent variables.
As typical of SBMs, Maximum Likelihood (ML) parameter estimates cannot
be computed due to the intractability of the likelihood function. This makes in-
feasible the use of an Expectation-Maximization (EM - Dempster et al., 1977)
algorithm, as the posterior distribution of the random variables to compute at
the E-step of the algorithm still requires the derivation of the likelihood func-
tion. To overcome the issue, we employ an extended variational EM algorithm,
where the true, intractable, posterior distributions are substituted by their ap-
proximate versions, having a tractable form; see e.g., Blei et al., 2017 for a
thorough treatment of the topic.

2 Model definition

Let G = {G k}k∈(1,...,K) denote a multiplex characterized by K layers. Each
graph G k = (N ,E k) ∈ G is defined by the same node set N = {1, . . . ,n} and
the layer-specific edge set E k, with k = 1, . . . ,K. Equivalently, the multiplex
G may be defined in terms of the adjacency array Y = {Y k}k∈(1,...,K), with Y k

being the adjacency matrix associated to the k-th layer. Its generic element is

Y k
i j =

{
1 if the pair (i, j) ∈ E k,

0 else.

That is, Y k
i j = 1 iff nodes i and j are joined by an edge in the network associated

to the k-th layer. For simplicity, we focus on the case of undirected networks,
even though the extension to the directed case is straightforward.

Let {Uk}k=(1,...,K) denote layer-specific, independent and identically dis-
tributed, latent variables defined over the support {1, . . . ,s} and let ηv =Pr(Uk =
v), for all k ∈ 1, . . . ,K. Furthermore, let Zk

i , i = 1, . . . ,n, be a node-level la-
tent variable, nested with respect to Uk,k = 1, . . . ,K, defined over the support
{1, . . . ,m} and let αqv = Pr(Zk

i = q |Uk = v).
We assume that, conditional on the latent variables Uk,Zk

i , and Zk
j , the ran-

dom variables Y k
i j are independent each other and follow a Bernoulli distribu-
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tion with tie probability only depending on the block membership of layers
and nodes involved in the relation. That is,

Y k
i j | Zk

i = q,Zk
j = l,Uk = v iid∼ Be(πqlv).

Based on the above assumptions and denoting with θ the set of all free
model parameters, the log-likelihood function can be written as

ℓ(θ) = log p(y) = log∑
u

∑
z

p(y | u,z)p(z | u)p(u) (1)

= log∑
u

∑
z

{[
K

∏
k=1

n

∏
i=1

∏
j>i

Be(πzk
i ,z

k
j ,uk

)

][
K

∏
k=1

n

∏
i=1

αzk
i ,uk

][
K

∏
k=1

ηuk

]}
,

where y is a realization of Y , and ∑u and ∑z are shorthands for ∑u1 . . .∑uK and
∑z1

1
∑z2

1
. . .∑zK−1

n
∑zK

n
, respectively.

As evident, deriving parameter estimates by either a direct or an indirect
maximization of equation (1) is impractical. Indeed, this would require the
computation of multiple summations, which is infeasible from a computational
standpoint, even for networks of very limited size. To overcome the issue, an
EM algorithm based on a variational approximation of the likelihood func-
tion may be employed as an effective alternative, as detailed in the following
section.

3 Parameter estimation and inference

To derive parameter estimates, we extend the variational approach firstly in-
troduced by Daudin et al., 2008 in the SBM framework. Accordingly, starting
from the likelihood function detailed in equation (1), estimates are derived by
maximizing the following lower bound

F (q(z,y),θ) = ℓ(θ)−KL [q(z,u) || p(z,u | Y ,θ)] , (2)

where KL[· || ·] denotes the Kullback-Leibler divergence between the true, in-
tractable, posterior distribution of the latent variables p(z,u | y) and the cor-
responding approximating function q(z,u). As we are not able to let KL van-
ish due to intractability of the likelihood, we look for the best approximation
q(z,u) in the class of completely factorized distributions

q(z,u) = q(u)q(z) =
K

∏
k=1

M ult(1,τk)
n

∏
i=1

M ult(1,φi).
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The variational EM (VEM) algorithm alternates between two separate steps
until convergence: (i) a VE-step, in which we maximize equation (2) with re-
spect to the variational parameters τk and φi; (i) a VM-step, in which maximize
(2) with respect to model parameters θ. Different works in the literature show
the effectiveness of the variational approach in recovering the true value of
model parameters in θ both with finite samples (see e.g., Mariadassou et al.,
2010) and asymptotically (see e.g., Celisse & Pierre, 2012).

To select the optimal number of blocks s and m, we may rely on an In-
tegrated Classification Likelihood criterion (ICL - Biernacki et al., 2000), as
typically done in the SBM framework. Once the optimal model is selected,
layer and node memberships are determined on the base of the parameter esti-
mates τ̂k and φ̂i, obtained at convergence of the estimation algorithm.
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ABSTRACT: Cluster-weighted factor analyzers (CWFA) models are a flexible family
of mixture models for fitting the joint distribution of a random vector constituted by
a response variable and a set of explanatory variables. It is a useful tool especially
when high-dimensionality and multicollinearity occurs. This paper extends CWFA
models in two significant ways. Firstly, it allows to predict more than one response
variable accounting for their potential interactions. Secondly, it identifies factors that
relate to disjoint clusters of explanatory variables, simplifying their interpretatiblity.
This leads to the multivariate cluster-weighted disjoint factor analyzers (MCWDFA)
model. An alternating expectation-conditional maximization algorithm is used for
parameter estimation. Application of the proposed approach to both simulated and
real datasets is presented.

KEYWORDS: finite mixtures, factor regression model, disjoint factor analysis.

1 Introduction

Mixture models represent a powerful statistical tool for clustering observa-
tions which is an essential task in many fields, such as economics, engineer-
ing, and social sciences. In the context of media technology, Gershenfeld,
1997 proposed a particular family of Gaussian mixture models, called cluster-
weighted models (CWMs), which has also been called saturated mixture re-
gression models in Wedel, 2002. The context of interest is represented by data
arising from a random vector (X,Y )′, in which a functional dependence of
Y on X is assumed for each mixture-component and the component-specific
joint density of (X,Y )′ is factorized into the product of the conditional density
of Y |X and the marginal density of X. Ingrassia et al., 2012 reformulated the
CWM in a statistical setting under the assumptions that both the component-
specific conditional distributions of Y |X and the component-specific marginal
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distributions of X are Gaussian. To allow the applicability of CWM in high di-
mensional X-spaces or when multicollinearity occours, Subedi et al., 2013 pro-
posed the cluster-weighted factor analyzers (CWFA) model, which addressed
the problem by assuming a latent structure for the explanatory variables in each
mixture component. The aim of this paper is to propose a new model, called
the multivariate cluster-weighted disjoint factor analyzers (MCWDFA) model,
extending CWFA model in a two fold way. Firstly, it allows to predict more
than one response variable accounting for their potential interactions. It leads
to a more flexible model since it can capture the complexity and variability
of real phenomena more accurately providing a more complete understanding
of the underlying mechanisms of a case study. Secondly, it identifies factors
that relate to disjoint clusters of explanatory variables which similarly predict
the responses. In particular, following the idea of Martella et al., 2008 and
Vichi, 2017, we replace the factor loading matrix with the product of a binary
row-stochastic matrix and a diagonal matrix in the factor analyzer structure.
In this way, the explanatory variables that similarly predict the responses can
be clustered into groups such that an explanatory variable loads only on one
single factor, and thus, it is uniquely associated by a single factor only. This
simplifies not only the interpretability of the resulting factors but also the inter-
pretability of the (many) regression coefficients, especially when the explana-
tory variables matrices are in high-dimensional X-spaces.

2 The cluster-weighted factor analyzers model

Briefly, the CWFA model (Subedi et al., 2013) is a particular mixture model
for fitting the joint distribution of a random vector composed of a response
variable and a set of explanatory variables, where, within each Gaussian in the
mixture, a single factor analysis regression (FAR) model (Basilevsky, 1981)
is assumed. Let y ∈ R and X ∈ Rp be a response variable and a vector of
explanatory variables, respectively, realizations of the pair (X,Y ). Specifically,
the CWFA model postulates that:

Y = β0g +β′
1gX+ eg with X = µg +ΛgFg + εg (1)

with probability πg (g = 1, . . . ,G). Terms µg represents the component-specific
mean vectors of X, Λg is a p×Q component-specific factor loadings matrix
(Q < p), Fg is a Q-dimensional vector of component-specific factors, which
are assumed to be i.i.d. draws from a Gaussian distribution N(0,IQ) and IQ
denotes the Q×Q identity matrix, εg are i.i.d. component-specific errors with
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Gaussian distribution N(0,Ψg), where Ψg = diag(ψ1g, . . . ,ψpg), that are as-
sumed to be independent of Fg. Furthermore, β0g and β1g are the component-
specific intercept and the (1× p) component-specific vector of the regression
coefficients, respectively; while eg is a component-specific disturbances vari-
able with Gaussian distribution N(0,σ2

g). Moreover, by assuming that Y is
conditionally independent of F given X = x in the generic g-th mixture com-
ponent, we get that the joint density of (X,Y ) is given by:

p(x,y,θ) =
G

∑
g=1

πgN(y|x;m(x;βg),σ2
g)N(x;µg,ΛgΛ′

g +Ψg) (2)

where m(x;βg) = β0g+β′
1gX and θ = {πg,βg,σ2

g,Λg,Ψg;g = 1, . . . ,G}. A col-
lection of sixteen parsimonious CWFA models can be obtained by constraining
or not σ2

g = σ2, Λg = Λ,Ψg = Ψ,andΨg = ψgIp.

3 The multivariate cluster-weighted disjoint factor analyzers model

As mentioned previously, here we introduce the MCWDFA model that ex-
tends CWFA framework by considering more than one response variable and
by identifying factors that relate to disjoint clusters of explanatory variables
which similarly predict the responses. Let X be the p-dimensional vector of
explanatory variables and Y be the M-dimensional vector of the response vari-
ables. For each component g (g= 1, . . . ,G), the MCWDFA model is composed
of two parts. The first extends the regression model in (1) with a multivariate
regression model formalizing the relations between the M responses and the p
explanatory variables, as follows:

Y = B0g +B′
1gX+ eg (3)

where B0g and B1g are the (M × 1) component-specific vector of intercepts
and the (p×M) component-specific matrix of the regression coefficients, re-
spectively; eg is the (M × 1) component-specific vector of disturbances vari-
ables with Gaussian distribution N(0,Σeg). On the other hand, the second part
of the model assumes that the factor loading structure of the CWFA model
holds except for the factor loading matrix Λg. In fact, to introduce explana-
tory variable clustering forming disjoint clusters which similarly predict the
responses, Λg is replaced by the product of the specific matrices Vg and Wg,
where Vg = [v jqg] is a (p×Q) component-specific binary row stochastic matrix
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representing the membership matrix of the explanatory variables into Q clus-
ters corresponding to Q factors, i.e. v jqg = 1 if and only if, for observations in
the g-th component, the j-th explanatory variable belongs to cluster q, 0 oth-
erwise ( j = 1, . . . , p); while, Wg = diag(w1g, . . . ,wpg) is a (p× p) component-
specific diagonal matrix of weights for the explanatory variables. Constraint
V′

gWgWgVg = diag(w2
.1g, . . . ,w

2
.Qg), with w2

.qg = ∑p
j=1 w2

jqg > 0 has to be satis-
fied, where the third index q added to w jg indicates the factor associated with
the j-th variable. Thus, the factor structure in (1) can be constrained in order
to include the explanatory variables clustering as follows:

X = µg +WgVgFg + εg. (4)

It is interesting observe that, recalling similar factor assumptions of the CWFA
model, the component-specific covariance matrix of X, after the proper permu-
tation of explanatory variables, has a block diagonal form, where each block is
the component-specific covariance matrix of the subset of the explanatory vari-
ables related to a specific factor. Maximum likelihood parameter estimates are
derived using an alternating expectation-conditional maximization (AECM)
algorithm. Application of the proposed approach to both simulated and real
datasets is presented.
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ABSTRACT: The paper investigates the dynamic relationships between cracks and
environmental variables, including temperature, humidity, and seismic activity, in
the Santa Maria del Fiore Dome. Using Vector Autoregression (VAR) models and
Granger causality tests, the study aims to understand the response of cracks to shocks
on neighboring cracks. ∗
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1 Introduction

The Santa Maria del Fiore Dome is a masterpiece of engineering and a sym-
bol of Florence, Italy. Filippo Brunelleschi’s design was revolutionary, and
his innovative approach to construction enabled the Dome to be built without
any scaffolding or temporary support structures. However, the first cracks on
the Dome appeared soon after its construction in the 15th century and have
progressively increased, giving rise to concerns about the stability of the mon-
ument (Ottoni & Blasi, 2015, Bertaccini, 2015, Bertaccini et al. , 2020). To
address this issue, a monitoring system consisting of over 160 instruments was
installed in the Dome starting from 1955. The present study is part of a long-
term project aimed at monitoring the stability of the monument and predicting
its future response to distressing phenomena. The objective of this work is to
investigate the dynamic relationships between the cracks and the influence of
environmental variables. To this aim, Vector Autoregression (VAR) models,
Granger causality tests and Impulse Response Functions (IRF) are employed.
The paper is structured as follows: Section 2 presents the data and the method-
ology used for the analysis; Section 3 describes the results.

∗Funding for this study was provided by the National Centre for HPC, Big Data and Quan-
tum Computing (project num. CN00000013). The author would also like to thank Silvia Bacci,
Bruno Bertaccini and Fabrizio Cipollini for for their constructive feedback and suggestions,
which helped to improve the quality of this article.
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2 Data & Methodology

The data, provided by the Opera di Santa Maria del Fiore, consists in daily
recordings of cracks width performed by the electronic system installed on the
8 webs of Brunelleschi’s Dome by the ISMES (Istituto Sperimentale Modelli E
Strutture) in 1987. In this analysis, we focus on the 13 deformometers located
on web 4 and we restrict our attention to the period from January 1, 2001
to February 28, 2017. † Beside the wall temperature, the data have been
supplemented with weather information such as air temperature and humidity,
as well as information on earthquakes that occurred within a 50km radius of
Florence during the analysis period.‡. Given the “breathing” mechanism of
the Dome, we suspect that neighboring cracks could affect each other. To
investigate the dynamic relationships between cracks as well as the influence
of exogenous regressors, we fit the following VARX(p) model (Lütkepohl,
2005),

Φp(L)Y t = c+B j(L)Xt + εt (1)

where: Y t = (DF401, . . . ,DF413) is a vector containing the web crack mea-
surements of all deformometers located on web 4; Xt is a vector of explanatory
variables (namely, wall temperature, daily variation of air temperature, humid-
ity and two dummy variables of earthquakes strength); c is a constant term;
Φp(L) = I −Φ1L− · · ·−ΦpLp and B j(L) = B0 +B1L+ · · ·+B jL j are matrix
polynomials in the lag operator L; Φ1, . . . ,Φp and B0, . . . ,B j are coefficient
matrices for lags 1 to p; and εt ∼ (0,Σ) is a multivariate white noise.

3 Results

All the variables included in the analysis show a yearly seasonal pattern that
is highly persistent over time and there are some deformometers exhibiting
non-linear trends (e.g., DF404). Before incorporating time series into a VAR
model, they must be made stationary. To achieve this, Fourier terms are used

†This choice is motivated by empirical facts: major cracks are concentrated on the even
webs, web 4 and 6 in particular (Ottoni & Blasi, 2015); moreover, early measurements evidence
irregular patterns in the web crack evolution that may be due to the instruments’ break-in period.

‡The city is located close to two fault lines, namely Mugello’s composite seismogenic source
and the (debated) Prato-Fiesole fault system. Earthquake data was sourced from the website
of the Italian National Institute of Geophysics and Volcanology (INGV) and the map of fault
lines can be found at https://diss.ingv.it/diss330/dissmap.html. Historical
recordings of weather information for the city of Florence were obtained from the website “Il
meteo”, https://www.ilmeteo.it/meteo/Firenze
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to remove the yearly seasonal pattern, and non-linear trends are removed with
a natural cubic spline. This results in the estimation of the following model,

Yt = c+g(t)+β1sin(2πt/365)+β2cos(2πt/365)+νt (2)

where: c is the intercept; β1 and β2 are the coefficients of the Fourier terms,
representing the magnitude and the phase of the seasonal patterns; g(t) is the
natural cubic spline function capturing the non-linear trend in the data; and νt
is the error term. After fitting model (2) separately to each variable, residuals
are retained, as they represent the de-seasonalized and de-trended versions of
the time series. To provide a snapshot of the results, Figure 1 plots the evolu-
tion of DF406 before and after the transformation, showing also the compari-
son between original and fitted values. The results of the VARX fit (available
upon request) evidence that all the exogenous variables included in the model
are significant predictors of the web cracks evolution in web 4. In particular,
the lagged air temperature variation and lagged wall temperature are generally
associated with a reduction in the crack width, whereas lagged humidity and
the earthquakes are associated with an increase. Based on the VARX model
above, it is also possible to explore the dynamic relationships between the
cracks employing Granger causality by testing the pairwise combinations of
the deformometers. The resulting Granger network is displayed in Figure 2.§
Interestingly, DF404 seems the main driver for the evolution of several web
cracks and its own dynamics does not appear to be Granger-caused by any
other web crack; on the contrary, DF401 appears to be driven by several web
cracks and doesn’t seem to exert any impact on others. Finally, DF409 seems
to be substantially isolated from the remaining deformometers. These results
are supported by the IRFs, for which we report a snapshot in Figure 3 below.

§For ease of interpretation, the graph only shows unidirectional relationships, i.e., a directed
edge is drawn from Y1 to Y2 only if past lags of Y1 predict future values of Y2 and not the reverse.

Figure 1. Starting from the left: i) original vs. fitted values; iii) residuals.
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Figure 2. Graphical representation of the Granger causality network originating from
model (1).

Figure 3. IRFs for (a) a shock on DF401 from DF404 and (b) a shock on DF405 from
DF407. Dashed lines indicate 95% bootstrap-based confidence intervals.

(a) (b)
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1Università di Padova (email: giuseppe.mignemi@phd.unipd.it,
antonio.calcagni@unipd.it)
2University College London (email:i.manolopoulou@ucl.ac.u)

Abstract In several observational contexts where different raters evaluate a set of
items, it is common to assume that all raters draw their scores from the same un-
derlying distribution. A common distributional assumption in this setting is that
hierarchical effects as independent and identically distributed from a normal with
the mean parameter fixed to zero and unknown variance. The present work aims to
overcome this strong assumption in the inter-rater agreement estimation by assign-
ing a Dirichlet Process (DP) mixture as the hierarchical effects’ prior distribution. A
new semi-parametric index λ is proposed to quantify raters polarization in presence
of group heterogeneity. The model is applied to a real context.

Key words: rating process, inter-rater agreement, Dirichlet mixture process, Bayesian
nonparametrics

1 A semi-parametric model proposal

Several methods and statistical models that aim to account for inter-rater variability
have appeared in the literature [3]. Despite the popularity of work on this issue, less
attention has been paid to possible latent dissimilarities among raters within inter-
rater agreement studies[4]. From a psychometric point of view, it can be appealing
to assess the extent to which different raters could have different latent opinions for
specific rating processes.
To this aim, Hierarchical Generalized Linear Models (HGLM) are a natural choice,
since they can account for the individual-variability specifying the effect of m co-
variates. The HGLM assumption regarding the distribution of the hierarchical ef-
fects is crucial in characterising different possible clusters or latent patterns of het-
erogeneity among raters. To this aim a Dirichlet Process Prior is specified over the
hierarchical effects and the model is specified as follow.
The rating yi j ∈ {0,1} of the item j ∈ {1, ..,J} carried out by rater i ∈ {1, .., I},
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considering a set xi j and zi j of covariates for the different effects, respectively, is
modelled as follows:

P(yi j = 1) = F(xi jβ + ziui + εi j),

ui|µc,Q ∼ Nq(µc,Q),

µc|G ∼ G,

G ∼ DP(α,G0).

Here F(·) is a cumulative distribution function (e.g., Normal or Logistic), Nq(·)
stands for a q-variate normal distribution, β is a p× 1 vector of non hierarchical
effects and ui is a q vector of hierarchical effects. Here, DP(α,G0) is a Dirichlet
Process Mixture with α > 0 precision parameter and base measure G0. It is assumed
that ui and εi j are independent.
The hierarchical effects distribution considering a stick breaking construction of the
DPM might be then specified the as follow:

ui|µc,Q,α iid∼
R

∑
c=1

πcNq(µc,Q), i = i, . . . , I

µc
iid∼ G0,

πc = νc ∏l<c(1− vl),

vc
iid∼ Be(1,α), c = 1 . . . ,R.

Where R ∈ N and large enough [1].

1.1 The λ index

The marginal posterior distribution of the hierarchical effects in the model outlined
above captures information about the dissimilarity or disagreement among raters
(on the assumption that the model captures the data adequately). To this end the
full estimated distribution of u resulting from the model might be useful. At each
iteration t, the density of u is given by the corresponding mixture model given the
parameters at iteration t. Following the formulation of [1] , the set of modes and
antimodes (i.e., the least frequent values between two consecutive modes) is iden-
tified; the latent disagreement λ is then defined as the log ratio between the mean
density of the modes and the that of the antimodes:

λ = ln

⎛

⎜⎜⎜⎝

1
M

M

∑
m=1

fu(γm)

1
A

A

∑
a=1

fu(ζa)

⎞

⎟⎟⎟⎠
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where M is the number of modes γm and A the number of antimodes ζa of f (u).
Larger values of λ indicate strongly multimodal distribution of the hierarchical ef-
fects, whereas smaller values are evidence of weak multimodality, thus the esti-
mated hierarchical effects are less concentrated. In this sense this index is informa-
tive about the latent group polarization. Which in this context is assumed as a way
of disagreement.

2 Posterior sampling and numerical example

As a numerical example a real data set from the social sciences context was anal-
ysed. Fifty-two personnel selectors were asked to rate 40 different applicants per
rater on a binary scale (0=not selected, 1=selected). In this case, yi j is the binary
score given to applicant i by selector j. Selectors’ years of experience and appli-
cants’ age were two covariate considered in the model. The effect of the latter was
specified as hierarchical with the distributional assumption outlined in the previous
section.
Since most of the parameters in the model have conjugate prior distributions a
blocked Gibbs sampling algorithm was used for the posterior sampling. An un-
derline latent variable approach accounting for the probit link function of the
HGLM was adopted. Weakly informative priors were elicited following [2]. As
suggested by [1], in order to estimate the density of u the approach of monitor-

ing u iid∼
R

∑
c=1

πcNq(µc,Q) at each iteration over a dense grid of u values was adopted.

At each iteration t, the density of the parametric mixture was computed at each
point of the grid. As result of some prior predictive check, a dense grid of 481
equally-spaced values from -12 to 12 (i.e., with a fixed interval of 0.05) was used to
monitoring the mixture density of the hierarchical effects. The maximum number of
mixture component R through the stick-breaking construction was fixed to 25. In all
the computations 80.000 iteration with 8.000 burn-in were used, the Markov chains
were thinned the by a factor of 80, resulting in samples of size 1000.
As shown in table 1 selector’s years of experience has a positive effect on th proba-
bility of being selected. The marginal posterior distribution of the hierarchical effect
of applicant’s age showed a bimodal distribution. More precisely the effect of this
predictor is positive for a subgroup of the overall sample, whereas it is negative
in the other one. The presence of this heterogeneity is shown also by the λ - index
which HPD interval is far from zero and includes large values.
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4 Mignemi et al.

(a)

(b)

Fig. 1 95% HPD intervals of the grid density (a) and λ -index.

Table 1 95% HPD intervals
95% HPD intervals

β (1.58,3.33)
bβ (−0.56,3.41)
σBβ (0.16,4.17)
µ0 (−0.28,0.75)
σD0 (2.14,5.25)
Q (0.09,0.29)
σε (0.86,3.08)
α (6.69,16.06)
Grid density (−4.15,−0.5)∪ (0.15,4.50)

References

1. GELMAN, A., CARLIN, J., STERN, H., DUNSON, D., AND VEHTARI, A.AND RUBIN, D.
Bayesian Data Analysis. Chapman and Hall/CRC, 11 2013.

2. HEINZL, F., KNEIB, T., AND FAHRMEIR, L. Additive mixed models with dirichlet process
mixture and p-spline priors. AStA Advances in Statistical Analysis 96 (05 2012).

3. NELSON, K., AND EDWARDS, D. Measures of agreement between many raters for ordinal
classifications. Statistics in medicine 34 (06 2015).

4. WIRTZ, M. A. Interrater Reliability. Springer International Publishing, Cham, 2020, pp. 2396–
2399.



569

LATTICE OF GAUSSIAN GRAPHICAL MODELS FOR
PAIRED DATA WITH COMMON UNDIRECTED

STRUCTURE
Dung Ngoc Nguyen 1 and Alberto Roverato1

1 Department of Statistical Sciences, University of Padova, (e-mail:
ngocdung.nguyen@unipd.it, alberto.roverato@unipd.it)

ABSTRACT: Typically, a model space embedded with a submodel order relationship
has a lattice structure, called the model inclusion lattice. Recent works are related to
the problems of joint learning of Gaussian graphical models suited for paired data,
with exactly two dependent groups of variables. In this framework, it was shown
that the model inclusion lattice does not satisfy the distributivity property, and this
increases the complexity of procedures for the exploration of the search space. We
consider a relevant subfamily of Gaussian graphical models for paired data represented
by coloured graphs with common uncoloured structure. We show that this subfamily
forms a proper sublattice of the family of Gaussian graphical models for paired data
and that, within this sublattice, the distributivity property is satisfied. This can be
exploited to improve efficiency in model search procedures.

KEYWORDS: coloured Gaussian graphical model, RCON model, distributivity.

1 Introduction

In the joint learning of multiple networks, recent works have considered the
case of paired data, where the observations come from two dependent groups
with the same variables, and every variable in the first group has a homologous
variable in the second group. In this context, it is of interest to learn the simi-
larities and differences between groups (Xie et al., 2016; Ranciati et al., 2021;
Roverato & Nguyen, 2022; Zhang et al., 2022; Roverato & Nguyen, 2023).

Let YV be a multivariate Gaussian random vector indexed by V = {1, . . . , p}
with covariance matrix Σ and concentration matrix Σ−1 = Θ = (θi j)i, j∈V . An
undirected graph G= (V,E) consists of a set V of vertices and a set E of edges,
which are unordered pairs of elements of V . In a Gaussian graphical model
(GGM) for YV every missing edge of G implies that the corresponding entry
of Θ is equal to zero (Lauritzen, 1996). A coloured version of G, denoted
by G = (V ,E), consists of a partition V = {V1, . . . ,Vv} of V and a partition
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E = {E1, . . . ,Ee} of E, into colour classes. A coloured GGM (Højsgaard &
Lauritzen, 2008) with coloured graph G is a GGM with additional symmetry
restrictions on the parameters implied by the colouring of G . More specifically,
the parameters associated with vertices or edges belonging to a same colour
class are restricted to be identical. One type of such restrictions are equalities
between elements of the concentration matrix Θ, thereby identifying the family
of RCON models.

In paired data problems, the random vector YV is partitioned into YV =
(YL,YR)T with |L| = |R| = p/2 = q, and it is assumed, without loss of gener-
ality, that L = {1, . . . ,q}, R = {1′, . . . ,q′} with i′ = q+ i for i ∈ L, and that for
every i ∈ L, Yi and Yi′ form a pair of homologous variables.

Roverato & Nguyen, 2022 introduced a subfamily of RCON models specif-
ically suited for paired data (PD-RCON models) where symmetries are imple-
mented as equality constraints on the diagonal entries θii = θi′i′ implied by the
colour class {i, i′} that we call a twin-pairing class. Similarly, for the symme-
tries of the off-diagonal entries that can be either θi j = θi′ j′ implied by the twin-
pairing class of edges {(i, j),(i′, j′)} between groups, or θi j′ = θ ji′ implied by
the twin-pairing class of edges {(i, j′),( j, i′)} across groups. Therefore, in the
coloured graphs for paired data, V is divided into V = V (t) ∪V (a) that con-
tains either twin-pairing classes of V (t) consisting of a pair of homologous
vertices, or atomic classes of V (a) consisting of a single vertex. This is similar
to colouring of edges with E = E (t) ∪E (a) where E (t) contains twin-pairing
classes made up of a pair of homologous edges between or across groups and
E (a) contains atomic classes made up of a single edge present on the graph.

2 Exploration of the search space

Typically, a model space is embedded with the model inclusion, or submodel,
relationship resulting in a lattice structure, which is obtained by specifying the
meet ∧ and join ∨ operations between two models. These operations are used
in structure learning of graphical models for the identification of neighbouring
models, and it is important that they can be efficiently computed. This is the
case of GGMs where the model inclusion coincides with the subset relation
between edge sets. Formally, for two GGMs G = (V,EG) and H = (V,EH), G
is a submodel of H, denoted by G ≼ H, if and only if EG ⊆ EH . Therefore,
the family of GGMs is a lattice where the meet G∧H and the join G∨H take
particularly simple forms represented by graphs with the edge sets EG ∩EH
and EG ∪EH , respectively. The distributivity between these operations is thus
satisfied, and we recall that distributivity is a useful property that facilitates the
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implementation of efficient procedures in lattices and has also been exploited
in model selection (Edwards & Havránek, 1987; Davey & Priestley, 2002;
Gehrmann, 2011).

Roverato & Nguyen, 2022 considered the family of PD-RCON models,
denoted by P , and showed that P forms a proper sublattice of RCON mod-
els under model inclusion and that, also for this sublattice, the distributivity
property does not hold. Here, we notice that the family of PD-RCON models
can be naturally split into equivalence classes. All the models in a same class
have the same underlying uncoloured undirected graph, that is, they are ob-
tained by imposing additional equality restrictions to a common GGM. For an
undirected graph G = (V,E) we denote by PE the family of PD-RCON models
represented by coloured graphs with a common uncoloured structure G. In the
following, we show that such equivalence classes form a proper sublattice of
P that is distributive.

Theorem 1 Let G = (V,E) be an undirected graph. The class of PD-RCON
models with a common uncoloured structure PE, equipped with the model in-
clusion order ≼, forms a distributive lattice where if G ,H ∈ PE,

(i) G ≼ H if and only if V (a)
G ⊆ V (a)

H and E (a)
G ⊆ E (a)

H ,

(ii) the meet (V∧,E∧) ∈ PE can be computed as

• atomic classes: V (a)
∧ = V (a)

G ∩V (a)
H , E (a)

∧ = E (a)
G ∩E (a)

H
• twin-pairing classes: V (t)

∧ = V (t)
G ∪V (t)

H , E (t)
∧ = E (t)

G ∪E (t)
H ;

(iii) the join (V∨,E∨) ∈ PE can be computed as

• atomic classes: V (a)
∨ = V (a)

G ∪V (a)
H , E (a)

∨ = E (a)
G ∪E (a)

H
• twin-pairing classes: V (t)

∨ = V (t)
G ∩V (t)

H , E (t)
∨ = E (t)

G ∩E (t)
H .

Proof. Point (i) follows from Proposition 2 of Roverato & Nguyen, 2022
because EG = EH = E. Furthermore, the meet and the join between G and
H in (ii) and (iii) can be computed as described in Theorem 4 of Roverato &
Nguyen, 2022, with Ẽ (a)

G = E (a)
G , Ẽ (t)

G = E (t)
G , Ẽ (a)

H = E (a)
H and Ẽ (t)

H = E (t)
H ;

moreover, E∗ = /0 with E (a)(E) ⊆ (E (a)
G ∩E (a)

H ), E (t)
G (E) = E (t)

G , E (t)
H (E) =

E (t)
H . All notations Ẽ (·)

G , Ẽ (·)
H , E∗, E (a)(E), E (t)

G (E), and E (t)
H (E) are defined

in Section 3 of Roverato & Nguyen, 2022.



572

3 Conclusions

We have shown that the family of PD-RCON models can be split into equiva-
lence classes which form distributive lattices with respect to model inclusion.
Future research work will concern the exploitation of this property to achieve
more efficiency in model search procedures.
Acknowledgement. Financial support has been provided by the MUR – Pro-
getti di Ricerca di Rilevante Interesse Nazionale (PRIN) grant 2022 SMNNKY.
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ABSTRACT: In this paper we propose Multivariate Tree Topic Modeling methodol-
ogy, a general purpose approach to Topic Detection, which aims to refine the general
results of a Topic Modeling methodology using Multivariate Trees in order to obtain
consistent document groups. Topic modeling is defined as a mechanism for discov-
ering low-dimensional, multi-faceted summaries of textual documents, typically by
discovering hidden or latent topics in a corpus of documents. Given these hidden top-
ics, we exploit the Multivariate Trees to obtain more homogeneous document groups
with respect to the Topic Modeling output alone. We applied our model to a standard
corpus of documents generally used in this kind of study to show that, when the aim of
Topic Modeling is to generate coherent clusters of documents, the use of Multivariate
Trees improves the overall coherence of these clusters for a wide range of Multivariate
Trees’ size.

KEYWORDS: Multivariate Analysis, Decision Trees, Topic Detection

1 Introduction

Topic modeling (TM) is a method for detecting latent structures in a collec-
tion of text documents. From the mathematical perspective, it can be seen as
a dimensional reduction problem, where the vector space of a text document
is often greater than several tens or hundreds of thousands, while the output
vectorial space of topic modeling is typically in the order of tens and seldom
hundreds. The typical use case of topic modeling is to represent themes and
topics that are present in a large corpus of text data. This article proposes a
method, based on Multivariate-Trees (MT), to refine the topic modeling out-
put. In the literature, there are three main families of Topic Modeling methods:
i) Matrix factorization based methods, ii) Probabilistic Methods, and more re-
cently iii) Deep-learning based approaches. Matrix factorization-based topic
modeling methods rely on a linear algebraic technique that factorizes a term-
document matrix into two non-negative matrices, where one matrix represents
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the topic-word distribution and the other matrix represents the document-topic
distribution. The constraints used to solve the linear algebraic problem lead
to the specific implementation, a widely used topic model is the Non-negative
Matrix Factorization (NMF) (Lee & Seung, 2000). Probabilistic-based topic
modeling methods rely on the hypothesis that documents are a mixture of top-
ics guided by, typically, two hidden distributions of words in a collection of
documents, one that models the distribution of words in hidden topics and one
that models the distribution of topics in documents. One of the most popular
approaches to topic modeling is Latent Dirichlet Allocation (Blei et al., 2003)
(LDA). It is a generative probabilistic model that assumes that each document
in a corpus is generated by a mixture of latent topics, where a distribution
over words characterizes each topic. When used for clustering, documents are
grouped together by their dominant topic. However, these groups might be
incoherent, since the assignment of the dominant topic is arbitrary. We show
that, when the main goal of topic modeling is to generate a coherent clustering
of documents, the use of multivariate trees improves the overall coherence of
these clusters as measured by heterogeneous indexes such as Gini’s Index.

2 Methodology And Data

Multivariate-Tree Topic Modelling De’Ath, 2002 is a general purpose ap-
proach to Topic Modeling, which aims to refine the general results of a TM
methodology using Multivariate Trees in order to obtain consistent documents
groups. Algorithm 1 illustrates MTTM method. It is composed of two phases.
In the first phase, a topic model is used to obtain the topic distributions of each
document. The topic model leads to a topic distribution over the documents,
as often in these applications, we considered the dominant topic, namely φt ,
and grouped the documents according to it. We finally evaluate the average
Gini’s index of each group considering the true category, namely yt , obtain-
ing our baseline measure of the groups’ homogeneity (Ḡtopic). Our goal is to
maximize the homogeneity of the groups (thus minimizing the average Gini’s
index). In the second phase, we apply a multivariate regression tree using the
topic distributions as dependent variables and the words’ frequencies as pre-
dictors. We evaluate the average Gini’s index Ḡtree as a function of tree’s size,
and compare it with the topic baseline (Ḡtopic).

Figure 1 shows the results of MTTM for the 20 Newsgroups dataset using
MT (De’Ath, 2002). Figure 1a reports our results using LDA topic modeling.
The dashed red line is the baseline of the Gini’s index obtained by the topic
modeling alone, it is the average Gini’s index of the topic modeling groups
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Algorithm 1 MTTM Algorithm Definition
Require D: Training documents of size N, each with a categorical response
variable yt and a set of quantitative variables Xt ;
Step 1:

Input: D = {d1, . . . ,dN}
Output: φ : W → Θ

X ←W
Y ← φ
Ḡtopic =

1
T ∑T

i=1 Gt(φt)
Step 2:
set (smin;smax)

for s = smin, s++, s < smax do
fit MT: Y ∼ X
Ḡtree =

1
s ∑s

i=1 Gs(yt)
end for

considering the true category. The green dashed line represents the Gini’s
index of the groups obtained by the multivariate tree obtained for the tree size
that minimizes the tree MSE. The blue continuous line represents the tree MSE
over the tree size, and the red continuous line represents the average Gini’s
Index over the tree size. We can observe that the average Gini’s Index of the
multivariate tree decreases as the number of splits increases, at the limit case
when the number of splits equals the number of documents, each split contains
only one document and the Gini’s index is zero. In this particular case, we
knew that there were 20 topics, thus we run the LDA algorithm using 20 as the
number of topics. Analyzing the output of LDA, we could identify only nine
out of 20 topics, namely, only nine topics were assigned with a probability
greater than zero. On the other hand, the multivariate tree’s output showed
an optimal number of splits around about 150. In this range of the number of
splits, we can observe that the MTTM output always yields more homogeneous
groups. Figure 1b shows the results using NMF topic modelling. In this case,
it can be observed that the average Gini’s Index over the tree size exhibit a
different behaviour, it starts with a lower value of average Gini’s index, and
it increases as the tree’s size increases, then it stabilizes for a wide range of
tree’s size and finally start a decreasing trend for extreme values. In general,
from Figure 1 we can observe that, after the application of the MT, the overall
Gini’s index is improved for a wide range of the tree’s size.
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(a) LDA algorithm. (b) NMF algorithm.

Figure 1: Average Gini’s impurity index for the 20 Newsgroups dataset using
Multivariate Tree.

3 Conclusion

This study proposes a methodology to enhance the ability of a topic detection
method to create coherent groups leveraging decision trees. We presented the
Multivariate-Tree Topic Modelling framework MTTM. MTTM is constructed
by combining topic modeling and multivariate-trees methodologies. We ap-
plied our model to a standard corpus of documents (the 20 Newsgroup) and
two topics models (LDA and NMF) generally used in this kind of studies, and
we found that, when the aim of TM is to generate coherent clusters of docu-
ments, the use of a MT improves the overall coherence of these clusters for a
wide range of the MT’s size.
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ABSTRACT: DESPOTA is a clustering method that cuts the tree branches at various
heights to find the best division among those that can be achieved from the hierarchical
clustering tree through the use of a permutation test at each node. In order to reduce the
computational cost and increase the applicability of DESPOTA to huge data sets, the
present study suggests two improvements to the DESPOTA original implementation
that combine aggregation with either splitting or partitioning approaches. A dataset of
the Italian universities’ five-year periodical accreditation by the Italian national agency
(ANVUR) is used to test the suggested approach.

KEYWORDS: hierarchical clustering, permutation test, top-down splitting

1 Introduction

Hierarchical algorithms represent excellent solutions for data clustering when
one aims to get nested partitions in the data that can be easily visualized
through tree-like representations, also referred to as dendrograms (from the
Greek word δὲνδρον= tree). Cutting the tree at a given level defines data par-
titioning into disjoint clusters. Nonetheless, the optimal cutting level (corre-
sponding to the optimal number of clusters) remains a ticklish problem, and the
choice is generally left to the user’s heuristic criteria. DESPOTA (Bruzzese &
Vistocco, 2015, DEndrogram Slicing through a PermutatiOn Test Approach)
seeks the best partition among the possible ones achievable from a hierarchi-
cal clustering tree, cutting the tree branches at different heterogeneity levels.
DESPOTA performs a permutation test at each node under the null hypothe-
sis that the two descending branches sustain only one cluster. It ensures that
the optimal number of clusters is based on the decision made using indepen-
dent permutation tests, considering the minimum cost required for joining two
branches and the cost incurred in the merging process. DESPOTA does not
require any distributional assumption and works in a purely data-driven ap-
proach. The use of permutations to test for clusteredness in abundance/species
data has been proposed by Greenacre (2011). DESPOTA needs a considerable
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computational burden, even for moderately large data sets. At each node of
the dendrogram, an agglomerative procedure is applied on each branch and for
each permutation.

This paper proposes two modifications of the DESPOTA original imple-
mentation, aiming to limit the computational effort and favor the applicabil-
ity of DESPOTA to large data sets. In particular, while the DESPOTA orig-
inal procedure is purely agglomerative, we propose two variations combin-
ing the agglomerative with divisive and partitioning approaches. The divisive
approach-based proposal is based only on distances and is suitable for cat-
egorical and mixed data. The partitioning-based approach provides further
computational efficiency, yet it requires continuous data.

The paper presents some main results concerning a dataset containing some
variables that refer to the efficiency and effectiveness of education at Italian
universities. These variables are a subset of those that are considered for the
five-year periodical accreditation by the Italian national agency (ANVUR).

The paper is organized as follows: Section 2 recalls the DESPOTA test
statistic while Section 3 describes the proposed enhancements; Section 4 pro-
vides an example and concludes the paper.

2 DESPOTA: general idea and test statistics

Any indexed hierarchy defines a sequence of nested partitions, and at each
partitioning, it corresponds to a level of heterogeneity h(·) dictating whether
observations/groups are clustered. The choice of h(·) and the corresponding
cluster solution is up to the user’s expertise and knowledge of the domain.

In order to provide a data-driven choice, Bruzzese & Vistocco (2015) pro-
vided a test statistic that evaluates whether two subgroups should be kept sep-
arated or merged together. Under the null hypothesis, it is assumed there is no
gain in splitting the subgroups at hand. Let us consider a generic dendrogram
and let h(Lk) and h(Rk) be, respectively, the left and right branch heterogene-
ity levels at the node k; then, the test statistic is obtained through the ratio of
the minimum cost to the actual cost. Hence, for a generic node k the quantity
h(Lk ∪Rk) indicates the heterogeneity level merging the nodes Lk and Rk, and
the test statistics is defined as:

rck =
|h(Lk)−h(Rk)|

h(Lk ∪Rk)−min{h(Lk),h(Rk)}
, (1)

is the ratio between the minimum and actual merging costs, which ranges in
[0,1]. If rck is close to 1 means that Lk and Rk should be kept together.
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The null hypothesis distribution is obtained via permutation: at each node
k of the original hierarchy, M (usually M=999) permutations of the Lk-vs-Rk
membership are considered and the corresponding rck values computed.

3 Using permutations to compute the null hypothesis distribution

The computation of quantities in 1 of the shuffled sets under the null hypothesis
is a critical point in DESPOTA. In fact, an agglomerative procedure is applied
on Lk and Rk to obtain h(Lk) and h(Rk). Finally, the M obtained values for
rck (see Formula 1) will define the null distribution of the test statistics. For
the general node k, the computation of rck only involves the second- and third-
last aggregation levels. Since the agglomerative approach is bottom-up, the
whole hierarchy is needed to compute the second- and third-last aggregation
levels. When the complete linkage is considered, given a set A of observations,
the following relation holds: h(A) = max(d(i, i′)), i, i′ ∈ A . In this case, to
compute the second- and third-last aggregation levels of the hierarchy, a top-
down approach can be used, doing just the first split.

A classic implementation of divisive clustering (see, e.g., DIANA, Kauf-
man & Rousseeuw, 2009) has a complexity of O(n4) as opposed to the O(n3)
of agglomerative procedures. Several proposals in the literature enhance the
computational performance of divisive approaches, making them substantially
more efficient than agglomerative procedures (seeRoux (2018) for a compar-
ative review). To compute the rck null distribution, a single step of a divisive
approach is used at each permuted node. A further enhancement to split up
the permuted nodes is using a partitioning procedure like k-means with care-
ful seeding (Arthur & Vassilvitskii, 2006) to avoid random starts and ensure
quality bi-partitions.

4 Example and Conclusions

The considered data for the application consist of three standardized indicators:
iC13 (credits earned at the first year), iC17 (students graduating up to one year
late), and iC28 (first-year students/faculty members ratio) measured over 68
Italian universities.

Both the agglomerative and the DESPOTA procedures are applied by using
the Euclidean metric and the complete linkage aggregation. In Fig1 the results
of the two clustering approaches are summarized.



580

T

Tcluster
cluster
Figure 1. Comparison betwee

rss detected by the class
rss selected by DESPOTAA

DESPOTAA and classical hie
of the lo le els of the h

grdendren roo raam cutting rules. T
sical horizontal rule, while the

TAA.

erarchical clustering solution
hierarch the horizontal cut

color
The boxes depict the four

reed leaves show the

ns disagree in the choice
t splits the lar

J

Wintr
grF

J
T

Tcar
VA

ha

T
dif

of the lower levels of the hierarchy: the horizontal cut splits the large group
on the right-hand side of Figure 1, albeit there is no substantial ffference
between the two groups. DESPOTAA sets Bicocca and Bocconi Universities in
the same group as they present high values in all the indicators. While the best
clustering solution is better interpretable, avving a non-subjective procedure to
pick a clustering solution is valid, even as a baseline.

References

ARTHUR, DAVVID, & VAASSILVITSKII, SERGEI. 2006. k-means++: The ad-
vantages of reeful seeding. Teech. rept. Stanford.

BRUZZESE, DARIO, & VISTOCCO, DOMENICO. 2015. DESPOTAA: DEndro-
gram slicing through a pemutation test approach. Joournal of classification,
32, 285–304.

GREENACRE, MICHAEL. 2011. A simple permutation test for clusteredness.
KAUFMAN, LEONARD, & ROUSSEEUW, PETER J. 2009. Fiinding rooups in

data: an rooduction to cluster analysis. John Wiley & Sons.
ROUX, MAURICE. 2018. A comparative study of divisive and agglomerative

hierarchical clustering algorithms. Joournal of Classification, 35, 345–366.



581

MARKOV SWITCHING AUTOREGRESSIVE MODELS
FOR THE ANALYSIS OF HYDROLOGICAL TIME SERIES

Roberta Paroli 1 and Luigi Spezia 2

1 Dipartimento di Scienze Statistiche, Università Cattolica SC, Milano, (e-mail:
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ABSTRACT: Markov switching autoregressive models (MSARMs) are proposed here
in order to tackle the non-linearity, non-Normality, non-stationarity, and long memory
of time series in hydrology. Bayesian inference, model choice, and stochastic vari-
able selection are performed numerically by Markov chain Monte Carlo algorithms.
Hence, it is possible to efficiently fit the data, reconstruct the sequence of hidden
states, restore the missing values, classify the observations into a few regimes, and
select the covariates. The efficiency of MSARMs is demonstrated by applications to
isotope signatures, turbidity measurements, and river temperature. Our proposal is
very general and flexible and can be applied to any kind of environmental time series.

KEYWORDS: marginal likelihood, non-linearity, non-Normality, non-stationarity, vari-
able selection

1 Introduction and Data

Hydrological time series are realisations of complex stochastic systems. A few
issues need to be taken into account by the modellers: non-Normality, non-
linearity, non-stationarity, and long memory. These issues can be analysed
by Markov switching autoregressive models (MSARMs): a class of models
that is a popular tool within the econometrics community to model complex
time series but has been considered quite rarely in other disciplines, includ-
ing environmental sciences. Among the few applications in hydrology, Birkel
et al. (2012) modelled isotope signatures; Spezia et al. (2021) turbidity mea-
surements and Spezia et al. (2023) water temperature. In this work, we investi-
gate the dynamic variability of water temperature by analysing an hourly water
temperature time series automatically recorded in the Gairn catchment, in the
North-East of Scotland, for more than five years, along with some covariates
affecting both the latent process (i.e. the time-varying transition probabilities
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of the hidden Markov chain) and the observed process. The water tempera-
tures is recorded hourly from 16th August 2012 to 23rd November 2017; the
length of the series is 46224 points (i.e. 1926 days; more than five years), with
328 missing values (0.71% of the total number of observations). The range
of the series is between -0.02◦C and 22.41◦C. The contemporary series of the
hourly river flows is also available. We also studied an intermediate series of
water temperature from 13th June 2014 to 31st August 2016 (19440 observa-
tions; 810 days; more than two years) with 209 missing values (1.08%) along
with three covariates (flow, air temperature, rainfall). Finally, a short series
was considered: 1200 observations (50 days) with no missing values recorded
from 18th August to 6th October 2012 along with seven covariates (flow, air
temperature, rainfall, wind speed, wind direction, radiation, soil temperature).
The length of series of the exogenous variables was limited by the need to not
have missing values in these deterministic sequences. This because missing
values within the covariates might bias the results of our analyses.

We propose MSARMs within the Bayesian framework: inference, model
choice, and variable selection are performed numerically by Markov chain
Monte Carlo (MCMC) algorithms.

2 Model and Inference

MSARMs are pairs of discrete-time stochastic processes, one observed and
one latent, or hidden. The hidden process is a finite-state Markov chain,
whereas the observed process, given the Markov chain, is conditionally au-
toregressive. The dynamics of the observed process is driven by the dynamics
of the latent one, so that each observation depends on the contemporary state
of the Markov chain. By this theoretical structure, MSARMs allow: i) mod-
elling non-linear and non-Normal time series by assuming that different au-
toregressions, each one depending on a hidden state, alternate according to the
Markovian regime switching; ii) modelling a long-memory process; iii) clas-
sifying the observations into a small number of homogeneous groups, labelled
as the regimes of the Markov chain.

Seven covariates were also incorporated into the model through both the
hidden Markov chain (the transition probabilities are time-varying and depen-
dent on the dynamics of these exogenous variables) and the observed process
(the state-dependent exogenous variables are added to the past observations).
Thus, we have time-varying means and autocovariances, and hence, a non-
stationary model. The covariates are: river flow, air temperature, rainfall, wind
speed, wind direction, radiation, and soil temperature. The data set is also
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characterised by periodicities: the hourly temperatures vary according to the
dynamics of the year and of the 24 hours of the day. Hence, both an annual
and a state-dependent daily harmonic component are added to the observed
process.

In the Bayesian framework, inference, model choice, and variable selec-
tion are performed numerically by MCMC algorithms. The basic scheme for
parameter estimation in the observed process is Gibbs sampling which also
allows both restoration of the missing values occurring within the series of
observations and reconstruction of the sequence of hidden states. Two ran-
dom walk Metropolis moves are used to estimate the parameters of the hid-
den Markov chain. Adding extra-steps to the basic Metropolis-within-Gibbs
scheme we can also compute the marginal likelihood of the various compet-
ing models through the MCMC sample. This procedure enables us to select
the best model within a set of models varying for the number of hidden states
and the order of the autoregressive processes. The exogenous, deterministic
variables appearing in the observed process may be different in any state and
they may be different from those affecting the transition probabilities. The
transition matrix is affected by two sets of covariates (possibly different from
each other and different from those in the observed process), one for the tran-
sitions from a lower to a higher state, and another for the transition from a
higher to a lower state. The selection of the covariates appearing in each state-
dependent autoregression and in the transition matrix is performed stochasti-
cally through the Metropolised-Kuo-MallicK (MKMK) method, proposed by
Paroli and Spezia (2008). In the case of non-homogeneous hidden Markov
models and MSARMs with covariates, the MKMK method improves the per-
formance of the competing techniques, especially when the explanatory vari-
ables are strongly correlated, and/or when the complexity of the model is high.

3 Results

The flexibility of the MSARMs is demonstrated by the three applications we
considered. For the whole series with a single covariate, the best model has
three hidden states and autoregressions of the fifth order. Thus, the non-linear
model (three hidden states) worked better than the corresponding linear model
(no hidden states). Flow is relevant in the observed process for two states only,
while it is not selected in the hidden process and the Markov chain is homo-
geneous. For the intermediate series with three covariates, the best model has
three hidden states and autoregressions of the sixth order. Again, the non-
linear model (three hidden states) works better than the corresponding linear
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model (no hidden states). Flow is relevant in the observed process for one
state only, while air temperature is always selected both in the observed and
the hidden process. For the short series with seven covariates, we obtain that
the best model is the linear autoregression of the sixth order, with no hidden
Markov chain behind. Air temperature, solar radiation, and soil temperature
are the relevant variables to explain the water temperature dynamics. Thus,
discharge is a proxy for water temperature modelling, when no other more di-
rectly related variables are available. In those situations, the latent states will
help to model the long-term dynamics, in the absence of true predictors with a
physical meaning. As we saw in the first two applications, the hidden regimes
can have an interpretation related to the seasonality. In fact, the Markov chain
shows an annual dynamics which anticipates the annual dynamics of the wa-
ter temperatures. It is not surprising that for the short series (50 days, i.e. no
annual periodicity) the model is not multi-state. It would be interesting to see
what happens when considering the seven covariates on longer series, that is
if the same covariates are selected in a non-linear model (i.e., with a multi-
state hidden Markov chain). Our study provides a novel application of the
suitability of the MSARMs in hydrological time series analysis and environ-
mental sciences in general. We hope our work can motivate other scientists
to approach MSARMs and give their highly structured time series a valuable
interpretation.
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Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
3 Meyer University Hospital, University of Florence, Italy

ABSTRACT: We present a case study concerning the use of electronic medical records
(EMRs) acquired in an intensive care Unit (ICU). In particular, we focus on the prob-
lem of exploiting this emerging new type of data for predicting Acute Kidney Injury
(AKI), a frequent complication in hospitalized patients during patient stay using data
collected in the Pediatric Cardiac Intensive Care Unit of Bambino Gesù Childen’s
Hospital. We discuss the methodological issues related to pre-processing the avail-
able EMR data, analyze the possible alternative ways of defining the outcome and use
different tools for making predictions.
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1 The challenges of electronic medical records

In the last thirty years, the development of technologies has favored the de-
velopment of Electronic Medical Records (EMRs). EMRs are the digital ver-
sion of a patient’s paper chart. EMRs are real–time, patient–centered records
that make information available instantly and securely to authorized users.
A database with Electronic Health Records contains patient data recorded to
varying levels of granularity.

The trend of adoption of digital health record systems in hospitals seems
to be clear and no longer deferrable (Collins & Tabak, 2014). The increasingly
widespread presence of this new type of data has involved the development of
research with the aim of using this data to support doctors’ decisions.

Hodgson et al., 2019 observe that, within health care, clinical decision
support systems (CDSS) are increasingly being introduced with the aim to
provide pertinent information, intelligently filtered or presented at appropriate
times, to enhance care and potentially improve outcomes.
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Indeed, Electronic health records contain valuable data for identifying health
outcomes, but these data also present numerous challenges. In fact, despite the
progress realized in recent years, the EMRs data suffer yet of no standardiza-
tion problem in measurements acquisition in the particular case of Intensive
Care Unit (ICU).

Statistics and Machine learning methods could help with some of these
challenges (Wong et al., 2018). As highlighted by Shafaf & Malek, 2019, the
use of statistical methods as well as artificial intelligence and machine learning
techniques in different medical fields are rapidly growing, in particular for the
case of prediction and early detection of disease.

We describe a case study of use of EMRs using the data collected by the
Pediatric Cardiac Intensive Care Unit (PCICU) of Bambino Gesù Childen’s
Hospital focusing on the problem of predicting Acute Kidney Injury (AKI)
beforehand. Our study involved patient records extracted from January 2018
to February 2020. All the data extracted by the EMR have been anonymized.

2 The case of acute Kidney injury prediction

AKI is an increasingly common clinical problem associated with mortality,
length of stay, and healthcare cost. In light of the impact of AKI on short and
long-term outcomes, it is of high importance to develop methods to identify
when patients are at risk for AKI and to diagnose subclinical AKI in order to
improve patient outcomes.

For these reasons, we focus our work on the objective of predicting the
AKI defined according to the AKI stage criteria (described in Khwaja, 2012).
We adopt a continuous forecasting approach of the state of AKI throughout the
hospital stay with a time advance of 48 hours.

In the initial phase, we work on data selection, extraction, and manage-
ment of missing data. In particular, according to the literature and the clin-
icians, we use a selection of objectively collected variables available in the
EMR data grouped into the following groups: admission and post-surgical
data, vital signs, fluids, blood gas analysis, laboratory analysis, and therapies
administered. Since a pediatric patient admitted to intensive care can be sub-
jected, although not frequently, to more than one surgical and/or hemodynamic
procedure during the same hospitalization we decided to select the following
subset of the dataset:

• only patient in pediatric age (≤ 18 years) with a length of hospitalization
greater than 48h
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RF (all var) RF using RFE GAM (all var) BN (all var) BN (MMPC)
AUC
bin AKI 0.93 (0.92-0.94) 0.95 (0.94-0.96) 0.87 (0.85-0.89) 0.90 (0.88-0.92) 0.90 (0.88-0.92)

AUC
severe AKI 0.99 (0.98-1) 0.98 (0.97-0.99) 0.94 (0.92-0.96) 0.97 (0.96-0.98) 0.97 (0.96-0.98)

Accuracy
Max AKI 0.92 (0.91-0.93) 0.93 (0.92-0.93) 0.87 (0.86, 0.89) 0.88 (0.87-0.89) 0.87 (0.86-0.88)

Accuracy
Mode AKI 0.95 (0.94-0.96) 0.96 (0.95-0.97) 0.90 (0.89, 0.91) 0.92 (0.91-0.93) 0.92 (0.91-0.92)

Table 1. Summary of results of AKI prediction using RF, GAM, BN.

• only the temporal data between admission and discharge date from PCICU
or before the start of a second surgery.

For groups of variables for which there was missing data (blood gas analysis
and vital signs) we assume the origin of the missing data is missing at random
(MAR). Starting this assumption we use a nonparametric missing value impu-
tation using Random Forest provided by MissForest R Package (Stekhoven &
Bühlmann, 2011). We discretize all the different acquisition frequencies in a
common sample frequency of ∆t = 6 hours. Finally, we define different types
of outcome grouping the AKI stage in the binary and multiclass way.

In the second phase, we develop different classification models: random
forest (RF), Generalized Additive Method (GAM), and Bayesian Network (BN).
In all the cases we split the dataset into train (70%) and test (30%) sets. The
former is used to fit the classification model, whereas the latter is employed to
evaluate its performance. In splitting the data, we preserve the percentages of
each class in train and test sets.

The overall performances reported in Table 1 are evaluated using the stan-
dard measures as Area under the ROC Curve (AUC-ROC) for binary cases and
accuracy and kappa for the multiclass cases. The obtained results are always
good compared with other recent attempts in the literature (Gameiro et al.,
2020).

We use, furthermore, different techniques of variable selection. In the case
of RF, we applied Recursive Feature Elimination RF as described in Chen
et al., 2020. In BN cases we use the Max-Min Parents and Children algorithm
(MMPC) as described in Lagani et al., 2017. The list of the most impor-
tant variables obtained in the various classifications confirm the importance of
some of the variables (such as creatinine) reported in other studies in the liter-
ature but also highlights the presence of variables that are specific to pediatric
patients under examination (such as Pediatric Index of Mortality).

All implemented models confirm the possibility of making an accurate pre-
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diction of the AKI stage using the PCICU. These models can be potentially
included in a web interface and, in perspective, be integrated into the EMR of
PCICU. This tool would allow the doctors to predict prospectively the patient’s
stage of AKI and evaluate how to intervene if necessary. In order to proceed
with this, it would be necessary for the future to implement the export of a
larger dataset adding new data acquired in the meantime in PCICU.
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ABSTRACT: Precision medicine, a patient-centric approach to disease treatment, has
attracted considerable interest in recent years. Building on a prior method focused on
short-term outcomes, we introduce a model that clusters patients based on similar pre-
dictive characteristics and treatment responses, enabling optimal therapeutic strategy
selection via predictive inference for new patients, incorporating long-term survival
outcomes.
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1 Introduction

The field of oncology has shifted towards personalized treatments that take
into account the heterogeneity of cancer pathogenesis. This is driven by the
recognition that cancer molecular mechanisms are complex and multifacto-
rial, involving multiple biomarkers and pathways. To address this complexity,
the focus has shifted towards developing therapies that are based on multiple
biomarkers.

Statistical methods for personalized treatment selection need to consider
the uniqueness of each tumor and individual patient characteristics. The com-
mon assumption of statistical exchangeability among patients should be re-
laxed, and patients should only be treated as exchangeable to the extent to
which their tumors are molecularly similar. By leveraging individual patient

Matteo Pedone gratefully acknowledges the support of the European Union - Next Genera-
tionEU, UNIFI Young Independent Researchers Call - BayesMeCOS Grant no. B008-P00634.
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characteristics, these personalized treatment strategies have the potential to
improve treatment efficacy and patient outcomes.

? proposed a hybrid two-step approach for accurate treatment selection
that integrates a Bayesian predictive model with prognostic and predictive
biomarkers. Patients are grouped based on molecular similarity using heuristic
clustering algorithms, and a Bayesian model predicts treatment response prob-
abilities for each competing treatment. This approach improves upon existing
methods by relaxing the assumption of full exchangeability among patients
and utilizing complementary sources of information.

? developed a fully Bayesian method that builds upon ?’s approach and
improves upon it by jointly performing clustering and prediction using a non-
parametric approach. By combining the two tasks into a single model, the need
for multi-step procedures is eliminated. The nonparametric approach provides
a sound framework for both clustering and prediction, accounting for the un-
certainty in all modeling steps. Ultimately, the individualized treatment rule
fully accounts for patients’ heterogeneity, as confirmed by improved predic-
tion performances compared to ?’s method (?).

? used a categorical outcome to evaluate treatment effectiveness after a
post-therapy follow-up period. However, this approach may be limited since
it only considers short-term outcomes. To address this limitation, we suggest
using time-to-event analysis to base treatment selection on long-term outcomes
such as disease progression, relapse, or death. This approach can better capture
treatment effectiveness.

2 Survival model

We examine a group of n patients from past clinical studies who were treated
with T different treatments. The patients’ predictive and prognostic biomark-
ers were measured, along with the survival times. The treatments are in-
dexed by a = 1, . . . ,T , and the total number of treated patients is denoted by
n = ∑T

a=1 na, where na is the number of patients receiving therapy a. The ob-
served survival times of patients are represented as vectors ttta, a = 1, . . . ,T .
However, due to limited study duration, not all patients experience the event
of interest, resulting in “right-censored” data. To account for this, binary indi-
cator vectors ddda, a = 1, . . . ,T are introduced to identify patients whose event
was observed during follow-up and those who were censored. In the case of
patients who received treatment a and experienced an observed event or cen-
sored time (da

i = 1), their time to event is represented by ta
i . On the other hand,

if da
i = 0, meaning that the patient did not experience an event or was not cen-
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sored during the study period, then ta
i represents the length of their follow-up.

We use an accelerated failure time (AFT) model to analyse right-censored
survival data, that takes into account the p− and q− dimensional vector of
prognostic and predictive features. Prognostic and predictive markers are de-
noted as zzza

i and xxxa
i , respectively, measured on the i−th patient who received

treatment a. It is assumed that patients with similar genetic profiles are likely to
have similar responses to a given treatment. We assume that Πa

na = Sa
1, . . . ,S

a
Ca

na

is a given treatment-specific partition of the indices 1, . . . ,na, where Ca
na is the

number of clusters among patients treated with therapy a, and na
j = |Sa

j | is the
number of patients in cluster j, for j = 1, . . . ,Ca

na .

log(ta
i ) = µa⋆

j + zzziβββ+σεi,

where βββ = (β1, . . . ,βp)⊤ is the vector of regression coefficients and εεε is
the error vector. Assuming a minimum value Gumbel distribution for the
error terms ε1, . . . ,εn ∼ Gumbel(0,1), gives rise to the Gumbel AFT model.
Moreover, we assume βk

iid∼ N(0,λ2
kτ2),λk,τ

iid∼ HC(0,1/p) (namely, a horse-
shoe prior), and σ∼U(aσ,bσ). Moreover, µa⋆

j s are cluster-specific parameters.
We assume a product partition model with covariates (PPMx, ?) for the joint
distribution of the clustering and the cluster-specific parameters (Πa

na , µa⋆
j ),

to induce independence across clusters and conditional independence within
clusters. The joint law of (Πn,µa⋆

j ) is assigned hierarchically as:

µa⋆
j | ζζζ,Πa

na
ind∼ N(θ,ΣΣΣ)

Πa
na ∼ PPMx(xxx).

All the details pertaining to the specification, construction, and posterior infer-
ence of PPMx can be found in ?.

3 Example

We conduct a simulation study to evaluate the properties of the proposed method
on finite samples. We consider 200 patients assigned to two competing treat-
ments and use piecewise constant exponential distributions to generate sur-
vival outcomes, that is we do not simulate from our model. Our simulation
design is inspired by the work of ?. To evaluate the performance of the cluster-
ing procedure, we generate synthetic covariates (5 predictive and 5 prognostic
biomarkers) with a known clustering structure (a two-component mixture of
normals). The validation set comprised 100 patients. In Table ?? we report the
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Adjusted Rand Index (ARI), the Mis-assigned Optimal Treatment (MOT), and
Proportion of Treatment Utility (PTU) averaged over 10 replications (standard
deviation in parenthesis).

ARI MOT PTU

1.00 7.50 0.93
(0.00) (5.92) (0.06)

Table 1: Results simulation study.

In terms of clustering, the model demonstrates a remarkable level of effec-
tiveness. The quantity of non-optimal treatment assignments is approximately
8 per 100 patients, with a considerable standard deviation. However, the high
PTU value suggests that the misassigned patients may belong to a subgroup
with similar treatment benefits across therapies.

4 Conclusion

Overall, our study’s preliminary results are promising and suggest that the pro-
posed method has potential for accurately assigning treatments using long-
term outcomes.
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ABSTRACT: We propose a variable ranking procedure based on copula bivariate time-
to-event margins under a general censoring scheme. The procedure identifies the im-
portant variables influencing the two time-to-events in a high dimensional setting in-
troducing a proper metric able to take into account the probabilistic copula structure.
The proposal is the first attempt to apply a variable selection method to a copula bi-
variate time-to-event domain. The advantages of the proposed approach are illustrated
in a case study based on AREDS dataset.
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1 Introduction

Technologies have had a deep impact on society and on data collection in a
wide range of scientific areas. With a relatively low cost, we are able to collect
massive amounts of information (and noise). This has led to the high dimen-
sional data phenomenon where the variable selection plays a central role. This
is even more true in the case of bivariate copula survival models under a cen-
soring scheme (presence of two outcomes and missing information). Under
this domain, we are interested in identifying two sets of relevant covariates for
two random times to event (T1 and T2). This can be achieved by ranking the
covariates in order of importance through a given metric ω to assess the con-
tribution of each feature in the dataset. As far as the authors are aware, there
is no valuable variable selection or variable ranking method nor implementa-
tion available in the literature for Bivariate Copula Survival models. In Sect.
2 we shortly present the model under analysis, and in Sect. 3 we sketch the
algorithm of variable ranking. The application to AREDS data is presented in
Sect. 4.
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2 The model

Let us consider the pair of survival times (T1i,T2i), a vector of covariates xi,
for i = 1,2, . . . ,n, and an associated generic parameter vector δ ∈ Rw of di-
mension w. We assume that T1i and T2i have marginal survival functions given
by Sv(tvi|xvi;βv) = P(Tvi > tvi|xvi;βv) ∈ (0,1), for v = 1,2, and a joint survival
function expressed as follows S(t1i, t2i|xi;δ) = C(S1(t1i|x1i;β1),S2(t2i|x2i;β2)
;m{η3i(x3i;γ)}), where δT = (βT

1 ,β
T
2 ,γT ), x1i, x2i and x3i are vectors of covari-

ates, with associated coefficient vectors β1 ∈ Rw1 , β2 ∈ Rw2 and γ ∈ Rw3 such
that w = w1+w2+w3, C : (0,1)2 → (0,1) is a uniquely defined 2-dimensional
copula function with coefficient θi = m{η3i(x3i;γ)} modelling the potentially
varying dependence of (T1i,T2i) across observations, η3i(x3i;γ) ∈ R is a pre-
dictor which includes generic additive covariate effects, and m is a monotonic
and differentiable one-to-one transformation function. The marginal survival
functions can be written as

gv [S(tvi|xvi;βν)] = ηvi(tvi,xvi; fv(βv)), ν = 1,2 (1)

where gv : (0,1)→R is a monotone and twice continuously differentiable link
function with bounded derivatives, ηvi(tvi,xvi; fv(βv)) ∈ R is an additive pre-
dictor which models the baseline hazard and several types of covariate effects,
and fv(βv) has the role of imposing a monotonicity constraint. Equation 1
can be written as S(tνi|xνi;βν) = Gν(ηνi(tνi,xνi, f(βν))) where Gν is an inverse
link function. The key difference between ηvi (tvi,xvi; fv (βv)), for v = 1,2, and
η3i (x3i;γ) is that the two former predictors must include smooth functions of
times tvi which can be treated as regressors. We, therefore, consider a generic
ηνi(ν = 1,2,3), where the dependence on the covariates and parameters is mo-
mentarily dropped, an overall covariate vector zνi containing xνi and tνi when
ν= 1,2, and z3i = x3i. For simplicity, the dimensions of z1i and z2i are assumed
to be W1 and W2. A generic additive predictor is specified as follows

ηνi = βν0 +
Kν

∑
kν=1

sνkν(zνkνi), ν = 1,2,3 (2)

where βν0 ∈ R is an overall intercept, zνkνi denotes the kth
ν sub-vector of the

complete vector zνi and the Kν functions sνkν(zνkνi) represent generic effects
which are chosen according to the type of covariate(s) considered (Wood,
2017). The above formulation allows for many types of flexible covariate ef-
fects. For more details see Marra, 2020.
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3 The Variable Selection Algorithm

We extend the variable selection procedure proposed by Baranowski, 2020 to
the bivariate survival data. Given the set of w covariates, the variables with
higher influence on ηνi(xνi,βνi), (ν = 1,2) are those that even in presence of
randomly selected sub-samples exhibit consistent relationship to explain the
dependence of the two survival functions.

Let Zi = {T1i,T2i,Xi1,Xi2, . . . ,Xiw}, for i = 1,2, . . . ,n and with w that grows
with n, be the observed dataset used to select the subset of covariates {X1, . . . ,Xw}.
Further, let Aν ⊂ (1, . . . ,wν) for ν = 1,2 be the indices that identify a subset
of covariates for the ν-th margin and let |Aν|= k be the cardinality of Aν, for
k = 0,1, . . . ,wν. Let Rs

n j (Z1, . . . ,Zn) be the ranking of the j-th covariate, based
on a metric ω̂ν

j = ω̂ν
j (Z1, . . . ,Zn) assessing the importance of each covariate of

each margin, such that ων
Rs

n1
≥ · · · ≥ ων

Rs
n|Aν|

. The probability of the set of |Aν|
top-ranked variables in Aν is:

πn,m(Aν) = P
({

Rν
n1 (Z1, . . . ,Zm) , . . . ,Rν

n|Aν| (Z1, . . . ,Zm)
}
= Aν

)
,ν = 1,2

(3)
that is obtained from a subset of m observations, with 1 ≤ m ≤ n. To estimate 3
a bootstrap approach is proposed in Baranowski, 2020. It follows that πn,m(Aν)
is the probability that the covariates in Aν are ranked at the top, using a subset
of m observations. The selection can be then performed on the set of top-
ranked variables Aν from which the number of terms ŝν can be determined
using equation (2.5) in Baranowski, 2020. In practice, given the estimated
probabilities of π̂n,m

(
Âνk,m

)
, for k = 0, . . . ,kmax − 1, with kmax a fixed large

integer, the number of relevant variables is related to the evaluation of the
magnitude of the estimated probability.

4 Application to AREDS dataset

The performance of the algorithm in Sect. 3 is assessed using the AREDS data
(available in the R package CopulaCenR). The dataset includes 629 Cau-
casian participants. The event of interest is late-AMD progression, which is a
disease affecting both eyes. Less than 50% of the subjects had late-AMD in
both eyes (bivariate interval-censored). Around 20% had late-AMD in one eye
but not the other by the study end (mixed interval- and right-censored). More
than 33% did not develop late-AMD in either eye (bivariate right-censored).
The variables are Severity score, values that reflect the progression of the dis-
ease in the eyes (SevScale1E SevScale2E), enrollment age (Age), and a
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genetic variant (rs2284665), factor variable with levels 0 (GG), 1 (GT) and
2 (TT), respectively). Furthermore, the AREDS dataset has been perturbed by
adding 100 independent realizations of a standard Gaussian distribution. For
sake of completeness, the algorithm has also been evaluated through a Monte
Carlo study (not included in the paper), which confirmed the effectiveness of
the method returning false positives and negatives close to zero.

We carried out some preliminary fitting from which emerged that {C0,
POPO} is the combination with the lowest BIC (4330.08) considering a full
model specification (all features included in all three margins). The procedure
has been applied on a standardized version of the dataset, where rs2284665
has been encoded as 0/1, resulting in three new covariates. The tuning parame-
ters has been specified as follows: kmax = 10, m = ⌊n/2⌋, τ = 0.5, 50 bootstrap
replicates, Clayton copula (C0) and Proportional odds (PO,PO). We have con-
sidered two metrics: ων = β2

j i(β j) (with i(β j) be the associated element of the
Fisher information matrix) and ψν = |β j|. In pseudo code (ignoring the smooth
functions of times tν) ην = βν0 +βν jx j for j = 1, . . . ,w. The former metric is
proposed specifically for the class of Bivariate Copula Survival models while
the latter is the absolute value of the coefficient.

Comparing the variable selected with the two metrics, the selection with
β2

j i(β) has greater cardinality and is able to select those characteristics consid-
ered relevant for the event of interest in the literature (see Sun, 2021), giving
empirical evidence of its goodness.

Table 1. Results of the algorithm in Sect. 3 using Clayton copula, proportional haz-
ard margins and using ων = β2

j i(β) and ψν = |β j|, for j = 1, . . . ,w, as metrics. The
covariates are ordered according to their importance. The BIC and AIC are obtained
by applying gjrm() function to a non-standardized AREDS.

Â1 Â2 BIC AIC
Mω {SevScale1E,SevScale2E,GG,TT} {GG,SevScale2E,TT,SevScale1E,GT} 4325.849 4225.385

Mψ {SevScale1E,SevScale2E} {SevScale2E,SevScale1E,GG,TT,GT} 4324.518 4220.659
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ABSTRACT: High-dimensional data sets, with fewer observations than variables, pose
a challenge for statistical methods, particularly if outlying observations are present.
Several proposals for robust and sparse estimation in the context of multivariate statis-
tical methods are available, together with algorithms for the computation. We present
a unified computational approach based on reformulating the problem as a constrained
optimization problem, also incorporating sparsity constraints. Recent developments
with adaptive gradient descent algorithms can efficiently solve such problems, and
they are also scalable with data dimensionality. The procedures are illustrated in the
example of canonical correlation analysis, where also higher-order directions can be
directly computed, and the sparsity can be controlled easily. Extensions to other mul-
tivariate methods are possible.

KEYWORDS: high-dimensional data, robust multivariate analysis, sparse multivariate
analysis.

1 Introduction

Classical methods for multivariate analyses, such as PCA (Principal Com-
ponent Analysis), CCA (Canonical Correlation Analysis), and LDA (Linear
Discriminant Analysis), are based on covariance estimation and aim to find
projection directions in the data according to some criteria. This estimation
procedure is not suitable for high-dimensional data sets, and therefore sparse
methods have been proposed, e.g. by applying elastic net type penalties (Zou
& Hastie, 2005) for the projection directions. Such methods are sensitive to
outlying observations, and therefore methods combining sparsity with robust
estimation have been proposed. In the context of CCA, for example, Wilms
& Croux, 2015 suggest using alternating regressions with sparse and robust
regression estimators. A disadvantage of this approach is that higher-order
directions cannot be derived directly.
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2 Methodology

In the example of CCA, we show how the objective can be reformulated as an
optimization problem, directly stating the optimization conditions and offer-
ing a flexible choice of covariance estimator and penalty function. Let xxx and
yyy denote a p- and q-dimensional random variable, respectively, and ΣΣΣxx,ΣΣΣyy
and ΣΣΣxy the corresponding covariance matrices. The first canonical correla-
tion coefficient ρ1 and the first pair of canonical vectors (aaa1,bbb1) are given as a
solution of the optimization problem

max
aaa∈Rp,bbb∈Rq

aaa′ΣΣΣxybbb (1)

under the constraints

aaa′ΣΣΣxxaaa = 1 and bbb′ΣΣΣyybbb = 1. (2)

The k-th canonical correlation coefficient ρk and the respective pair of canoni-
cal vectors (aaak,bbbk) maximize (1) under the condition that they are uncorrelated
with the previous k−1 directions, denoted as the constraints

aaa′ΣΣΣxxaaai = 0 and bbb′ΣΣΣyybbbi = 0, for i = 1, . . . ,k−1. (3)

Penalty terms are added as further constraints for a sparse setting,

Pα1(aaa)≤ c1 and Pα2(bbb)≤ c2 (4)

where c1 and c2 denote positive constants, and the penalty terms (4) are given
as elastic net (Zou & Hastie, 2005) penalties with mixing parameters α1,α2.

The augmented Lagrangian with λλλ denoting the Lagrange multipliers, and
H summarizing the constraints, is then given as

Lρ(aaa,bbb,λλλ) =−|aaa′ΣΣΣxybbb|+λλλ′ ·H(aaa,bbb)+
ρ
2
∥H(aaa,bbb)∥2

2. (5)

Then, a solution to (1)-(4) can be found by minimizing (5). For the optimiza-
tion algorithm, the method of multipliers (see e.g. Bertsekas, 1982) is com-
bined with an adaptive gradient descent algorithm as described by Reddi et al.,
2018 for an alternating update of (aaa,bbb) and λλλ.

Our approach is not only flexible in the choice of covariance estimator
and penalty type, but we can also directly state the necessary conditions for
higher-order canonical correlations. The robustness of the resulting canonical
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correlations can be controlled by an appropriate choice of covariance estima-
tors for ΣΣΣxx,ΣΣΣyy and ΣΣΣxy. The penalty terms (4) induce sparsity in the resulting
canonical directions. Conditions (3) ensure that higher-order directions are
uncorrelated to lower-order canonical vectors. For the higher-order directions,
again, a suitable level of sparsity can be chosen.

In a simulation study, we show the robustness and suitability of our ap-
proach for high-dimensional data in different simulation scenarios. Empirical
applications from tribology underline the usefulness of this approach.

3 Outlook

The methodology can be adapted to other robust multivariate methods such
as LDA or PCA for high-dimensional data. It is sufficient to formulate the
optimization problem and the constraints in a joint Lagrangian problem. The
advantage of using an adaptive gradient descent algorithm is its scalability
to higher dimension, and it also leads to highly precise parameter estimates,
especially for higher-order components.
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ABSTRACT: In many real-life situations it may happen to consider a regression model
with compositional explanatory variables. Compositional data describe parts of some
whole, having the feature to sum to a fixed value, so they are commonly presented as
vectors of proportions, percentages, or frequencies. In the compositional framework,
the presence of structural zeros in the regressors is problematic, since a composition
is not allowed to have a part equal to zero. In the recent years, a few techniques have
been introduced in the literature to adress this issue. In this paper a description and a
comparison of the most interesting proposals are provided.

KEYWORDS: Compositional data, regression models, structural zeros, logratio trans-
formation.

1 The compositional data framework

During the last decades Compositional Data (CoDa) have gained more atten-
tion in the literature. The relevant information in compositional data is in the
ratios between the parts and not in their absolute values or in their sum. Differ-
ent examples of compositional data can be easily found in every field: physics,
chemistry, finance, social sciences, and economics, just to mention some of
them (cf. Pawlowsky-Glahn et al. , 2015). The CoDa methodology has been
developed to deal with the compositions.

Definition 1 Let D∈N. Consider the real-valued vectors RD, with all (strictly)
positive components. Two of such vectors x=(x1,x2, . . . ,xD) and y=(y1,y2, . . . ,yD)
are compositionally equivalent whether there exists a positive constant c ∈ R
such that x = c · y. A D-part composition is then a class of equivalence con-
taining all the compositionally equivalent vectors in RD.

Since a D-part composition is an equivalence class, a representative one has to
be selected: it is usually the vector of proportions that sum to 1. The sample
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space for the D-part compositions is the simplex SD, defined by:

SD = {(x1,x2, . . . ,xD) ∈ RD : xi > 0 ∀i;
D

∑
i=1

xi = c}, (1)

where the arbitrary constant c is usually set to 1. For further details, see
Pawlowsky-Glahn et al. , 2015, Filzmoser et al. , 2018, and references therein.
Starting from the definition of composition, the so-called Aitchison geom-
etry on the simplex can be defined: it is the suited framework to analyze
compositional data, and it can be equipped with a coherent distance, norm,
and inner product. In CoDa analysis, a dataset X is a sample of n observa-
tions, each one being a D-part composition X = (x1,x2, . . . ,xn)′, with xi =
(xi1,xi2, . . . ,xiD), i = 1,2, . . . ,n. The standard statistical descriptive measures,
based on the real Euclidean structure, should be used with attention in such a
dataset, since they can lead to erroneous conclusions (see Pawlowsky-Glahn
et al. , 2015). To overcome this issue, the compositional approach proposes
alternative statistical tools and methods, based on the Aitchison geometry.

A usual practice in handling compositions is the application of transfor-
mations, mapping them into real vectors (belonging to suitable spaces) for ex-
ploiting the usual Euclidean structure. Several transformations based on logra-
tios have been proposed: the additive (alr), the centered (clr) and the isometric
(ilr) logratio transformations. Their features can be found in Pawlowsky-Glahn
et al. , 2015 and Filzmoser et al. , 2018. The definition of ilr-transformation is
the following one.

Definition 2 For a D-part composition x = (x1,x2, . . . ,xD), the isometric lo-
gratio (ilr) transformation associated to an Aitchison-orthonormal basis in SD,
{ei}, (i = 1,2, ...,D−1), is the mapping from SD to RD−1 given by:

ilr(x) = [⟨x,e1⟩a,⟨x,e2⟩a, ...,⟨x,eD−1⟩a],

where ⟨·, ·⟩a denotes the Aitchison inner product in SD, defined by:

⟨x,y⟩a =
1

2D

D

∑
i=1

D

∑
j=1

(
ln

xi

x j
ln

yi

y j

)
.

For the remainder of this paper, it is worth just mentioning that the ilr-
transformation is characterized by two important features: (i) it reduces the
number of parts, since a D-part composition is mapped into a vector in RD−1;
(ii) it preserves both the distances and the angles: in the simplex the Aitchison
distance of two compositions is equal to the distance of the corresponding ilr-
transformed vectors in RD−1 (see Pawlowsky-Glahn et al. , 2015 for details).
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2 Regression models with compositional regressors

Many examples of regression models with (at least some) compositional ex-
planatory variables can be easily found. In such a case, the regressors can not
be directly used since compositional data are by definition singular: the con-
straint about their sum provides the linear dependency of the regressors and a
singular covariance matrix.

The standard approach is to apply the ilr-transformation to the original
explanatory variables and to consider the corresponding ilr-transformed vari-
ables as new regressors (Hron et al. , 2012). In this way, the linear dependence
of the compositional regressors can be discarded: the new obtained model can
be easily handled, and then parameter estimation can be done as in usual linear
regression. This approach cannot be applied whether there are zeros, since in
this case, no logratio transformation can be carried out. It follows that in case
of structural zeros in the regressors, a different procedure has to be undertaken.
It is worth recalling that a structural zero is a value that is certain to be zero,
and it is not due to imprecise or insufficient measurements.

3 Three approaches dealing with structural zeros

For facing the issue of structural zeros in regression models with compositional
regressors a few approaches have been proposed, quite recently. In the follow-
ing, three of them are briefly presented: the first one is due to Aitchison, 1986,
while the other two are described in Verbelen et al. , 2018. In the presentation
more details will be provided to characterize and compare the three methods.

3.1 A naive approach: the replacement

The replacement strategy is the first method proposed in the literature, and it
is the most intuitive one. The idea is to take all those values giving problems
(since, for example, they are zeros) and replace them with a nonproblematic
value (for example, a value very close to zero). This approach can be very
easily implemented, and it can also be used to remove missing values. The
most relevant drawbacks are the arbitrary nature of the replaced values, and
the inconsistency in case of structural zeros, as they are true zeros.
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3.2 The conditioning approach

The conditioning approach consists in treating the observations with different
structural 0 patterns as different subgroups within the data, so that the regres-
sion coefficients are modeled conditionally on the 0 patterns. This method
requires to compute for each compositional observation with at least one 0
part, the ilr-transformation of the corresponding subcomposition with non-
zero parts (obtained by removing the zero parts) and to model the compo-
sitional predictor effect separately by 0 pattern. The regression coefficients
obtained by this method are different for each structural 0 pattern and hence
only estimated by using observations with that particular 0 pattern.

3.3 The projection approach

The projection approach is more parsimonious than the conditional one, since
the regression parameters are shared across the different 0 patterns. In this
method, a generalized isometric logratio transformation from the simplex SD

to RD−1 is proposed as an extension of the usual one. This new transformation
can be applied also to a compositions with one or more zero parts, since the
logratios are calculated using the projections onto the orthogonal complement
of the structural 0 parts.
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ABSTRACT: Existing methods can perform likelihood-based clustering on a multi-
variate data matrix of ordinal responses, using finite mixtures to cluster the rows and
columns of the matrix. Those models can incorporate the main effects of individual
rows and columns and the cluster effects to model the matrix of responses. However,
many real-world applications also include available covariates. In this study, we have
extended mixture-based models to include covariates and test what effect this has on
the resulting clustering structures. We focus on clustering the rows of the data matrix,
using the proportional odds cumulative logit model for ordinal data. We fit the models
using the Expectation-Maximization (EM) algorithm and assess their performance.
Finally, we also illustrate an application of the models to the well-known arthritis
clinical trial data set.

KEYWORDS: cluster analysis, mixture models , EM algorithm, ordinal responses,
proportional odds mode.

1 Introduction

A well-known definition of an ordinal variable says it is one characterized by
a categorical data scale, which describes an order showing differing degrees of
dissimilarity (Agresti, 2010). Thus, although ordinal variables are affected by
the distances among their ordinal categories, those distances are not known. In
this work our approach to mixture-based clustering involves constructing an
additive linear model of parameters, connected to the response data via a link
function. Additional terms such as covariates may easily be added to the linear
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predictor. To the best of our knowledge, (Fernández et al., 2019) introduced
this formulation of model-based clustering for ordinal data with covariates, but
the performance of these covariate methods and, more importantly, their influ-
ence on the resulting clustering structures, have not been documented so far.
The main purpose of this article is to extend such models to include covariates
and allow them to affect the detection of cluster structures. Moreover, we are
also interested in comparing how the resulting clustering structures compare
to those obtained without covariates, and how these changes may affect the
interpretation of the results. We will focus on extending the one-dimensional
clustering approach proposed in (Matechou et al., 2016). This approach mod-
els ordinal response data using the proportional odds assumption of the cumu-
lative logit model (from now on ”proportional odds model”). We will include
covariates directly in the linear predictor.

2 Model formulation

When the data are in matrix form, clustering of rows is called row cluster-
ing. We present the row clustering formulation for finite mixtures based on
the proportional odds model. This closely follows the model formulations in
(Matechou et al., 2016 , Fernández et al., 2019). We decided to focus on row
clustering because it is more common to have covariates linked to observations
(rows) than to variables (columns). We consider a set of n subjects and m ordi-
nal response variables, each with q possible ordinal response categories. Thus,
data can be represented by an n×m matrix Y with ordinal entries yi j. The row
cluster index r (r = 1, . . . ,R) represents the number of the row cluster and the
symbol i ∈ r indicates that row i is allocated to row cluster r. We shall assume
that all rows belonging to the same row cluster r have ordinal responses driven
by the same row cluster effect, i.e. that there are no individual row effects. In
a simpler model with clustering of rows, the rows (observations/subjects) will
tend to be clustered if they have similar patterns of responses, without taking
into account the information present in the covariates.

Having in mind that R and C are the numbers of row clusters and column
clusters, respectively, we will deal with the possible values of C = m (when
column effects are different and therefore they are included within the model,
without clustering). C = 1 when the column effect is the same and it is not
included into the model.

Considering the simplest row clustering model, without column effects,
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the proportional odds model without covariates can be expressed as

logit

(
k

∑
h=1

θi jrh

)
= ηi jrk = µk −αr, (1)

where the parameters µk are the cutpoints and αr indicates the effects of row
cluster r. Adding p covariates into Model 1, we obtain

logit

(
k

∑
h=1

θi jrh

)
= ηi jrk = µk − (αr + xT

i δr), (2)

where δr represent the effects of the covariates Models 1 and 2 will be used in
the simulation and application section to compare the clustering structure.

3 Application

We applied the models proposed in this article to the arthritis clinical trial
data set (Lipsitz et al., 1996), which compares the drug auranofin and placebo
therapy for the treatment of rheumatoid arthritis. The data set is obtained from
the R package multgee (Touloumis, 2015). In this application, the covariate-
dependent clustering could help to identify subsets of patients with similar
covariate information patterns. This insight would be important because it
would provide a flexible approach for identifying potential heterogeneous gen-
der, age, and auranofin treatment effects on the arthritis scores. After fitting
the models without covariates Eq.(1) and with covariates Eq.(2), with differ-
ent number of row clusters, we compared them using the information criteria
AIC and BIC (see results in Table 1). AIC indicates that the best model is
the version of the row clustering model including age and treatment covariates
(µk − (αr + xi1δ1r + xi2δ2r)) with R = 4 row clusters (AIC = 2136.78), which
is better than its counterpart in the model without covariates (AIC=2154.40).
However, BIC shows that the model without covariates (µk −αr) and R = 4 is
the best model (BIC=2202.05). A possible reason is that BIC penalizes higher
numbers of parameters more strongly than AIC does, leading to a preference
for more parsimonious models.
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Table 1. Results of row clustering models fitted to the arthritis data set. The best
model in each group of models (no covariates, one, two, or three covariates), based
on AIC, is shown in bold.

Model R number of Log-like AIC BIC
parameter

µk −αr 2 6 -1096.99 2205.99 2234.58
3 8 -1077.73 2171.46 2209.59
4 10 -1067.20 2154.40 2202.05
5 12 -1067.20 2158.40 2215.58

µk − (αr + xiδr) x= age 2 8 -1138.18 2292.37 2330.49
3 11 -1071.88 2165.75 2218.17
4 14 -1065.18 2158.37 2225.08
5 17 -1060.84 2155.68 2236.68

x=treatment 2 8 -1082.28 2180.57 2218.69
3 11 -1067.93 2157.87 2210.28
4 14 -1057.70 2143.40 2210.11
5 17 -1056.23 2146.46 2227.46

x= gender 2 8 -1096.89 2209.77 2247.89
3 11 -1079.51 2181.02 2233.44
4 14 -1066.92 2161.84 2228.55
5 17 -1066.37 2166.74 2247.74

µk − (αr + xi1δ1r + xi2δ2r) x1 = age, 2 10 -1072.54 2165.07 2212.72
x2= treatment 3 14 -1059.23 2146.46 2213.17

4 18 -1050.39 2136.78 2222.55
5 22 -1048.53 2141.05 2245.88

x1 = age, 2 10 -1085.83 2191.67 2239.32
x2= gender 3 14 -1068.97 2165.95 2232.66

4 18 -1061.29 2158.58 2244.35
5 22 -1059.26 2162.52 2267.35

x1 = treatment, 2 10 -1081.82 2183.64 2231.29
x2= gender 3 14 -1065.99 2159.99 2226.71

4 18 -1056.73 2149.45 2235.22
5 22 -1055.06 2154.13 2258.96

µk − (αr + xi1δ1r + xi2δ2r + xi3δ3r) x1 = age, 2 12 -1071.60 2167.21 2224.39
x2= treatment, 3 17 -1060.50 2155.00 2236.01

x3= gender 4 22 -1050.35 2144.71 2249.54
5 27 -1052.14 2158.35 2287.00
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& GJELSVIK, BERGLJOT. 2016. Biclustering Models for Two-Mode Or-
dinal Data. Psychometrika, 81(3), 611–624.

TOULOUMIS, ANESTIS. 2015. R Package multgee: A Generalized Estimat-
ing Equations Solver for Multinomial Responses. Journal of Statistical
Software, 64(8), 1–14.



608



609

A PROPOSAL OF DEEP FUZZY CLUSTERING BY
MEANS OF THE SIMULTANEOUS APPROACH

Claudia Rampichini 1 and Maria Brigida Ferraro1

1 Department of Statistical Sciences, University of Rome “La
Sapienza”, (e-mail: claudia.rampichini@uniroma1.it,
mariabrigida.ferraro@uniroma1.it)

ABSTRACT: Classical clustering methods may suffer from the presence of high di-
mensional or complex data. In this scenario, deep clustering can be useful to overcome
such problems. The main idea is to use a neural network to reduce the input’s com-
plexity and apply a clustering algorithm to the reduced space. Our method consists
in combining a neural network with the fuzzy k-means clustering algorithm. In par-
ticular, the proposal links the encoder part of an autoencoder neural network to a new
layer, in which the membership degree values are calculated, and jointly optimizes the
method by minimizing the fuzzy k-means objective function. Furthermore, to avoid
the problem of collapsing centers, a penalization term is added. The adequacy of the
proposal is evaluated by means of benchmark datasets.

KEYWORDS: deep clustering, neural networks, fuzzy k-means.

1 Introduction and background

Recent improvements in deep learning techniques have led to a new research
field called deep clustering that shows new opportunities for conventional clus-
tering to overcome problems with high-dimensional data. The idea of deep
clustering is to learn latent features of training data using a deep neural net-
work (DNN) and apply clustering methods to the resulting data representation.
There exist two different deep clustering approaches: sequential and simulta-
neous. In the former, clustering algorithms are applied to the learned DNN
representation, while in the latter, deep representation learning and cluster-
ing objectives are jointly optimized. Clustering approaches that are combined
with deep learning models include k-means, graph clustering, spectral cluster-
ing, Gaussian mixture model, and many others, however, few studies focus on
deep fuzzy clustering. One of the most famous models in the simultaneous
approach is the deep embedded clustering method (DEC) that was proposed
by Xie et al. (2016). This method simultaneously learns feature representa-
tions with stacked autoencoders and cluster assignments with soft k-means,
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minimizing a joint loss function. Later, some more complex deep fuzzy clus-
tering methods have been proposed. The main differences are in the use of
convolutional networks and more complex structures for loss functions (see,
for example, Feng et al., 2020, and Zhang et al., 2020).
Starting by considering the problem of clustering a set of n points {xi ∈ X}n

i=i
into k clusters, each represented by a centroid µµµg, g = 1, ...,k, the DEC model
consists in transforming the input data by a non-linear mapping fθ : X → Z,
where θ are learnable parameters and Z is the latent feature space where clus-
tering is performed. Moreover, the Kullback–Leibler (KL) divergence loss
between a centroid-based probability distribution and an auxiliary target dis-
tribution is used as the objective function:

L = KL(P||Q) =
n

∑
i=1

k

∑
g=1

piglog
(

pig

qig

)
. (1)

In (1), qig is a Student’s t-distribution used as a kernel to measure the sim-
ilarity between embedded point zi and centroid µµµg:

qig =
(1+ ||zi −µµµg||2/α)− α+1

2

∑g′(1+ ||zi −µµµg′ ||2/α)− α+1
2

(2)

and it can be interpreted as the probability of assigning sample i to cluster
g. Moreover, zi = fθ(xi) ∈ Z corresponds to xi ∈ X after embedding, α rep-
resents the degrees of freedom of the Student’s t distribution. The auxiliary

target distribution pig is calculated as the ratio between q2
ig
fg

and ∑k′
g′=1

q2
ig′
fg′

where
fg = ∑n

i=1 qig are soft cluster frequencies; k-means is used only to initialize
cluster centers. Their final model consists of the encoder part of the DNN and
an additional layer in which the probability of assigning sample i to cluster g
is calculated.
Starting from this model, we propose a simultaneous deep fuzzy clustering
method in which the fuzzy k-means algorithm is involved. The idea for this
proposal stems from noticing that the use of fuzzy clustering algorithms is of-
ten related to the initialization of cluster centers only, moreover, few works in
the literature deal with these clustering algorithms. Additionally, we test our
method on images improving upon traditional clustering methods which often
poorly cluster this kind of data. The main reason is the difficulty of obtaining
reliable similarity measures in high-dimensionality space but deep clustering
methods have shown impressive performance in image clustering tasks.
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2 Proposed method

The main idea is to replace the KL divergence loss with the fuzzy k-means
objective function, hence

argmin
U,C

n

∑
i=1

k

∑
g=1

um
ig∥zi −µµµg∥2, (3)

s.t. uig ∈ [0,1], i= 1, ...,n and g= 1, ...,k; ∑k
g=1 uig = 1, i= 1, ...,n.

Similar to the work of Xie et al. (2016), we create a deep autoencoder
neural network and keep only the encoder part. Then we link a new layer to
this part which computes the membership degrees values uig as follows

uig =
1

∑k
j=1

(
∥zi−µµµg∥
∥zi−µµµ j∥

) 2
m−1

. (4)

In this way, by minimizing the fuzzy k-means loss function, we jointly
optimize the cluster centers and DNN parameters. Since in the optimization
process, the encoder part may lead, in an attempt to reduce the initial data, to
the collapse of all the points into a single cluster, we introduce a penalization
term, which is the absolute value of the sum of the pairwise differences. Ad-
ditionally, to ensure that the two terms are on the same scale, we normalized
them by dividing the first term by the product of the number of training exam-
ples used in one iteration hence batch size (b) and the number of cluster centers
(k), and the second term by the product of the batch size and itself. Hence the
new loss function takes the following form

argmin
C,U

1
bk

n

∑
i=1

k

∑
g=1

um
ig∥zi −µµµg∥2 − 1

b2

n

∑
i=1

n

∑
j=1

um
ig|zi − z j|. (5)

3 Results

We evaluate the proposed method on different benchmark datasets: Mnist,
Fashion-Mnist and Cifar10. The first dataset consists of 70.000 black and
white images of handwritten digits of 28× 28 pixel size, the second is a dataset
of 70.000 Zalando’s article images of 28× 28 pixel size and the last consists
of 60.000 different colour images of 32×32 pixel size. The accuracy results
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achieved by the standard k-means, k-means in the embedding space (AE+k-
means), DEC and our method are reported in Table 1.

Table 1. Comparison of the accuracy level achieved by different methods on Mnist,
Fashion-Mnist and Cifar10 datasets.

Method Mnist Fashion-Mnist Cifar10
k-means 53.5 47.4 22.9
AE+k-means 81.8 57.9 80.1
DEC 84.3 51.7 30.1
Our method 93.4 62.3 31.3

The results show the potential of the proposed method. In particular, on the
Mnist dataset, we achieve an accuracy of 93.4% against 53.5% obtained with
k-means and 84.3% with DEC; also on the Fashion-Mnist the accuracy of our
method is higher than the others. On the Cifar10, the accuracy of our proposal
is in line with the value reached by DEC but far from that of AE+k-means; this
is probably related to the more complex dataset with colour images.

4 Concluding remarks

The new deep clustering method jointly learns feature representations with a
deep autoencoder neural network and clusters assignments with fuzzy k-means
by minimizing a loss function constructed in accordance with the chosen fuzzy
algorithm. The results show margins of improvement with respect to the clas-
sical clustering methods and DEC model. Our future research will focus on
the study of the different segmentation techniques for colour images.
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ABSTRACT: In this paper we frame the problem of obtaining estimates from the sur-
vey on the employment status of graduates in Italy as a Small Area Estimation problem
because of unit nonresponse. We propose to use generalized linear mixed models and
to include two variables that can be considered proxies of the response propensity
among the set of covariates to make the MAR assumption more tenable. Estimates for
degree programmes are obtained as (semi-parametric) empirical best predictions.

KEYWORDS: generalized linear mixed model, latent trait models, mixed-mode sur-
vey, nonparametric maximum likelihood, paradata.

1 Introduction

Since 1998 AlmaLaurea, a consortium of 80 Italian Universities, carries out
an annual survey on the employment status of graduates. The survey is car-
ried out one, three, and five years after graduation and provides a broad picture
of graduates’ job placement in the labour market. The 2022 edition has in-
volved 660,000 first- and second-level graduates in 2020 (AlmaLaurea, 2022).
The survey is a census and targets many variables of interest other than the

∗We are grateful to AlmaLaurea for making the data available and to AlmaLaurea re-
searchers for sharing their precious insights that motivated the research questions and helped
with interpretation.
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employment status, such as job characteristics, including type of contract and
salary, and of the use of the skills gained at university.

As with all surveys, nonresponse occurs: the overall response rate for the
graduates involved one year after graduation (the focus here) is 68.4%. This is
the outcome of a two-fold process. First, a subset of graduates (approximately
92%) is identified as those who have given consent to be contacted according
to the General Data Protection Regulation no. 2016/679. Then, these graduates
are contacted using a dual survey technique: CAWI (Computer-Assisted Web
Interviewing) and CATI (Computer-Assisted Telephone Interviewing). CATI
is used to contact those who did not respond to the online questionnaire. This
sequential mixed-mode CAWI-CATI methodology leads to a response rate of
74.2% among graduates contacted with their consent in accordance with the
GDPR. Estimates for the overall population of graduates are adjusted for non-
response by means of calibration on known population totals coming from
administrative registers (AlmaLaurea, 2022; Kott, 2006).

The survey aims at providing estimates not only at the population level, but
also for subpopulations (domains) of interest given by the degree programmes.
In the last edition, there are almost 5,700 degree programmes for which un-
weighted count data are publicly released (AlmaLaurea, 2023). Some of these
domains have a very small number of observations: this is due to a small num-
ber of observations in the population coupled with nonresponse. This setting
resembles that of Small Area Estimation (SAE, Rao & Molina, 2015): a SAE
problem arises when the sample size available in a domain (area) of interest
is so small that direct estimates, albeit (approximately) unbiased, have unduly
large variances. Here, re-weighting methods such as calibration are of little
use. SAE methods, on the other hand, are indirect as they make use of ob-
servations coming from other areas and are model-based. In SAE, the small
sample size is the outcome of a process (the sampling design) that is known
to the researcher. Here, the SAE problem arises from a process (the response)
that is unknown. Often, the (unverifiable) assumption that data is Missing At
Random (MAR) given the covariates included in the model is made. In this
paper we propose a modeling approach that tries to go beyond the classical
MAR assumption by making use of all the available auxiliary information on
the response behaviour of graduates from paradata and other survey data.

2 The proposed modeling approach

We adapt here the framework proposed in Marino et al. , 2019, and use their
notation. Let U denote the finite population of AlmaLaurea graduates in 2020
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of size N, which can be partitioned into m non-overlapping small areas (degree
programmes), with Ui denoting the i-th small area with size Ni, i = 1, . . . ,m.
For a given degree programme i, population data consist of Ni measurements
of a response variable Yi j and a vector of covariates xxxi j = (xi j1, . . . ,xi jp)′, with
j = 1, . . . ,Ni. For ease of notation, we consider here the case of one vari-
able of interest. Covariates xxx come from administrative registers, as well as
from previous surveys conducted by AlmaLaurea such as that on the Profile of
Graduates. Also, let ααα1, . . . ,αααm be iid, q-dimensional, vectors of area-specific
random effects (q ≤ p) with density fα(·), Eα(αααi) = 0, and Eα(αααiααα′

i) = ΣΣΣ for
all i = 1, . . . ,m. Last, let wwwi j denote a q-dimensional subset of xxxi j associated to
αααi. Then a sample of size n of respondents is obtained from the above popula-
tion and we denote by ri the set containing the ni population indexes of sample
units belonging to degree programme i, with n = ∑m

i=1 ni. Therefore, values of
Yi j are known only for the sample (i = 1, . . . ,m, j ∈ ri), while the values of xxxi j
and of wwwi j, are known for all units in the population (i= 1, . . . ,m, j = 1, . . . ,Ni).

Usually, it is assumed that the response process is non-informative for the
small area distribution of Yi j | xxxi j, allowing to use population level models with
sample data. In order to make this assumption more tenable, we propose to in-
clude in each vector xxxi j two covariates obtained as follows. The first one comes
from paradata and has the following categories: “Response with CAWI”, “Re-
sponse with CATI”, “Response with CATI recall”, “Nonresponse”, “No con-
sent to GDPR”. It can be considered as a proxy of the response propensity as
these categories can be ordered along a decreasing response propensity. The
second one exploits information on item nonresponse of graduates in the sur-
vey and in previous surveys to build a latent variable in the spirit of Matei &
Ranalli, 2015. A set of binary indicators taking value 1 if the item is not miss-
ing and 0 if it is missing can be used to derive a latent trait using Item Response
Theory models that can be interpreted as a proxy of the response propensity.
Nonrespondents have all zeros and the smallest value of the latent trait.

We assume that, conditional on αααi, responses Yi j from the same area i
are independent with density fy|α(yi j | αααi;xxxi j) in the Exponential Family with
canonical parameter θi j modeled as θi j = xxx′i jβββ+www′

i jαααi. The marginal distri-
bution of yyyi is obtained as fy(yyyi;XXXi) =

∫
Rq fy|α(yyyi | αααi;XXXi) fα(αααi)dαααi, where

fy|α(yyyi | αααi;XXXi) = ∏ j∈ri fy|α(yi j | αααi;xxxi j) and XXXi is the matrix of covariates
for units in the i-th area. Typically, a parametric specification for fα(αααi) is
adopted, with a common choice being the Nq(000,ΣΣΣ) distribution. We also con-
sider the more flexible alternative proposed in Marino et al. , 2019, in which
the distribution of αααi is left unspecified and nonparametric ML is used.

We use respondents data on Yi j (i = 1, . . . ,m, j ∈ ri) and population data
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on covariates xxxi j (i = 1, . . . ,m, j = 1, . . . ,Ni) to predict a (possibly) non-linear
function of fixed and random effects, say ζ(βββ,ααα,ΣΣΣ). According to Jiang, 2003,
the Best Predictor (BP) of ζ in terms of minimum MSE is given by ζ̃BP =
Eα|y [ζ(βββ,αααi,ΣΣΣ) | yyy] =

∫
Rυ ζ(βββ,ααα,ΣΣΣ) fα|y(ααα | yyy)dααα, where

fα|y(ααα | yyy) =
∏m

i=1 fy|α(yyyi | αααi;XXXi) fα(αααi)

∏m
i=1 fy(yyyi;XXXi)

,

yyy= (yyy1, . . . ,yyym) and υ=m×q. Estimates of model parameters can be obtained
by maximizing the observed data likelihood function: L(ΦΦΦ) = ∏m

i=1 fy(yyyi;XXXi).
To maximize L(ΦΦΦ), numerical approximations (e.g., Gaussian quadrature tech-
niques) or simulation based methods (e.g., Monte Carlo integration) may be
required. Once parameters are estimated, we may compute the empirical BP
of ζ, that is ζ̂EBP = ζ̃BP(β̂ββ, α̂αα, Σ̂ΣΣ). To evaluate the quality of such predictions,
the second-order MSE estimator can be considered as in Jiang, 2003 and in
Marino et al. , 2019.
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ABSTRACT: Statistical depth functions are a class of functions that provide a center-
outward ordering of sample points in multidimensional space. In this work we intro-
duce a novel depth function that is based on the cumulative distribution function along
random directions, and is thus termed directional distribution depth. Some properties
and a connection to the Mahalanobis depth when applied to sphered data are shown.
The proposed depth is used as a basis for supervised classification using maximum
depth classifiers and more flexible polynomial separators in the depth space. It is
shown to be effective and competitive against other depth functions through simulated
experiments and real data applications.

KEYWORDS: depth functions, random projection, supervised classification

1 Introduction

In multivariate analysis the identification of order statistics, quantiles and atyp-
ical patterns is very challenging due to the lack of an order among observations,
which is instead natural in the real line R1 (Kong & Mizera, 2012; Serfling,
2002). To overcome this challenge, the most important line of research is
rooted in the concept of statistical depth, which leads to a center-outward or-
dering of the sample points in Rp with p ≥ 2. More specifically, a depth func-
tion is a function that can assign a real number to each point of in multivariate
space, measuring the outlyingness of the point with respect to the barycenter,
and can be used as a starting point for outlier detection, clustering, classifica-
tion.

Popular depth functions are the Mahalanobis depth, which is based on the
Mahalanobis distance (Mahalanobis, 1936), and the halfspace depth, which
measures the depth of a point by the smallest probability of a halfspace that
contains that same point. Liu et al. (1999) described different depth func-
tions as valuable exploratory tools in multivariate analysis. Introducing some



618

notation, let X be a multivariate random variable of order p with a probabil-
ity distribution F : a data depth measures how deep (or central) a given value
x of X is with respect to the data cloud or a given distribution function and
is usually denoted as D(x,F). A simple example is the Mahalanobis depth,
which is inversely proportional to the Mahalanobis distance: MD(x,F) =[
1+(x−µµµ)ΣΣΣ−1(x−µµµ)

]−1
, where µµµ and ΣΣΣ are the mean vector and dispersion

matrix of X and can be estimated from the data.
Zuo & Serfling (2000) reviewed some of the most popular depth func-

tions and introduced some desirable properties that in their view can be define
a proper depth function. More precisely, a depth function is a non-negative
and bounded function, which is: (i) invariant to the coordinate system or to
the scale of the underlying measurements (affine invariance); (ii) maximum at
its center; (iii) monotonically decreasing when a point moves away from the
deepest central point and (iv) it should approach zero as a point approaches
infinity. Some other properties that can be attractive and that we will consider
are consistency of the function based on sample data to a population counter-
part, and computational feasibility, i.e., it should be possible to compute the
depth values of data points efficiently even for large p.

2 Directional Distribution Depth

Let S be a random vector of length p with a uniform distribution on the sphere,
that is any of its realizations s is a direction belonging to the sphere (Sp−1) and
having unit norm (∥s∥2 = 1). The depth of a point is derived by projecting it
along any direction and evaluating the cumulative distribution function of the
univariate distribution of the projected data S⊤X. The resulting probability is
transformed so that the depth is symmetric with respect to the median, defined
as the deepest point. As a last step we take the expected value over all random
direction. More precisely, the directional distribution depth is the mapping
Rp ×F → [0,1] defined as

D(x,F) = ES

[
1−2|FS⊤X(S⊤x)−0.5|

]
, (1)

where ES is the expectation with respect to the random vector S, F is the proba-
bility distribution of the multivariate data and FS⊤X is the marginal probability
distribution of the transformation S⊤X evaluated at S⊤x. FS⊤X can be any
(probabilistic or nonparametric) univariate distribution function differently pa-
rameterized along each direction. In this work we will focus and compare the
depth based on the Gaussian distribution, on the fgld quantile function due to
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its large flexibility (Redivo et al., 2023; Chakrabarty & Sharma, 2021) and the
nonparametric kernel density estimation.

Theorem 1. Given whatever model choice of FS, the depth defined in (1) is
a proper depth function in the sense of the definition given by Zuo & Serfling
(2000).

An interesting property closely related to the proposed depth function is
that the average squared distance of univariate projections from the mean, ap-
plied to sphered data, is proportional to the Mahalanobis distance in the origi-
nal multivariate space:

ES

[(
S⊤x̃−S⊤µ̃µµ

)2
]
=

1
p
(x−µµµ)⊤ΣΣΣ−1(x−µµµ),

where x̃ and µ̃µµ are respectively the point and center transformed via the spher-
ing matrix. Next we adapt our depth definition to sample data. Let Xn be a
sample of size n from X, without loss of generality we assume it to sphered.
Let sB be a set of B random directions. Then the sample version of the direc-
tional distribution depth for a generic point xi is

Dn(xi,F) =
∑B

b=1

[
1−2|F̂s⊤b Xn

(s⊤b xi)−0.5|
]

B
, (2)

This quantity is strongly consistent with respect to its population counterpart,
that is as n → ∞ and B → ∞, Dn(x,F)

a.s.−−−→ D(x,F).

3 Application to Supervised Classification

We apply to proposed depth function to supervised classification by allocat-
ing a new observation to the class with the maximum depth among the K
populations (Ghosh & Chaudhuri, 2005). The performance of the proposed
depth (with its three distribution estimators) is evaluated through a simulation
study, comparing it to maximum depth classifiers based on other depth defi-
nitions (Mahalanobis, projection, simplicial and halfspace) and to linear and
quadratic discriminant analysis. The simulation comprises three distributional
scenarios: with Gaussian data classifiers based on the directional distribution
depth perform similarly well to those based on data generating normal model;
with t-distributed data, linear discriminant analysis performs the best, being
quite robust to the heavier tails, with the distributional depth classifiers lag-
ging shortly behind; with skewed data our depth performs generally better
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than the alternatives, being the only one that can accommodate non-elliptical
data, which is assumed by the Mahalanobis depth and the discriminant anal-
ysis methods. Throughout the simulations classifiers based on the halfspace
depth have substantially worse results, and this is probably due to the diffi-
culty in computing the depth, with only an approximation being available in
higher dimensions, where the resulting classifier suffers the most.

We also applied depth based classifiers to commonly used benchmark data
sets. Here we have considered polynomial separators for the classes in the
depth space, in contrast to the quadrant bisector line implicitly assumed by the
maximum depth classifier. This method is called DD-classifier and has been
introduced in Li et al. (2012). The DD-classifier based on the new depth is
able to achieve competitive accuracies (measured through mean accuracy in
repeated training-testing splits) even against K-nearest neighbours and SVM.
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ABSTRACT: The assessment of air quality is of great importance for defining mea-
sures for pollution reduction and ensuring the public health protection. The moni-
toring stations are the tools established to measure and manage the compliance with
national ambient air quality standards. Because these networks need considerable fi-
nancial resources, many studies are aimed at identifying possible redundancy in air
quality monitoring sites. Following these lines of research, we focus on ascertaining
if the spatial distributions of NO2, PM10, PM2.5 and benzene concentrations are ho-
mogenously distributed in the urban area of Pescara-Chieti (Central Italy). To this end
we adopt a multivariate functional model-based clustering algorithm.

KEYWORDS: air quality, redundancy, meteorological normalization, FDA, model-
based clustering.

1 Introduction

In recent decades there has been a growing interest in monitoring air pollution
levels, especially in urban areas. Countries all over the world have set up air
quality monitoring networks for collecting unbiased, accurate and comparable
data on the air quality and supporting policies that lessen the impact on human
health and the environment. In order to save money and avoid data duplication,
it is preferable to use the fewest number of stations possible to meet monitor-
ing goals. There are numerous studies in the literature that look for potential
redundancy in air quality monitoring networks (see Wilson et al., 2005 for a
review). The majority of them concentrate on determining whether or not the
pollutant is uniformly distributed throughout the area and on the intra-urban
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variation of air pollutant concentrations. In this study, we address the prob-
lem of identifying possible redundancy in air quality monitoring stations using
the FDA (Ramsay & Silverman, 2005) paradigm. FDA has gained consider-
able interest in the literature over the past two decades, and several benefits
of using FDA over conventional vectorial approaches have been emphasized,
such as the possibility to extract more information from the data (the smooth-
ness of the data structure, rate of change, acceleration, and dynamic changes
over a large-scale domain). In this work, we analyze the multivariate air pol-
lution concentrations using a multivariate functional model-based clustering
approach proposed by Schmutz et al., 2020. The data set used is comprised of
hourly measurements of air quality and weather data obtained from the auto-
matic reporting platform operated by the Regional Agency for Environmental
Protection of the Abruzzo Region (ARTA), in the urban area of Pescara-Chieti
(Central Italy). We also implement a meteorological normalization to control
for changes in the weather and lower the variability in air quality time series.
The remainder of this paper is structured as follows. Section 2 describes the
study area and the data used for the analysis, as well as the meteorological nor-
malization procedure conducted. Section 3 provides background information
on the functional clustering algorithm employed. Finally, Section 4 conveys
the main findings of the analysis.

2 Study area and data

The study focused on the Chieti-Pescara urban area in the Abruzzo Region
(Central Italy), which includes the conurbation of the major cities Pescara and
Chieti, and the neighboring municipalities of Montesilvano and Francavilla al
Mare. It is a nearly flat area located in the terminal stretch (about 15 km long)
of the Pescara river valley, which flows into the Adriatic Sea. The valley in-
dustrial and vehicular traffic are the main contributors to air pollution, with
domestic heating having a sizable impact during the winter. For this study,
we take into account NO2, PM10, PM2.5 and benzene measurements obtained
from ARTA automatic reporting platform between January 2017 and Decem-
ber 2019 at 5 five monitoring sites divided into two categories: urban back-
ground (3 sites: Teatro d’Annunzio, Chieti, and Francavilla) and urban traffic
(2 sites: Via Firenze and Montesilvano). The dataset also includes the fol-
lowing meteorological factors: wind speed, wind direction, temperature, rela-
tive humidity, solar radiation, air pressure and precipitation, measured on the
ground at air quality monitoring stations. Since weather strongly influences
pollutants formation and transport, in this paper we consider a meteorologi-
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cal/weather normalization. More specifically, in our air quality data analysis
over time, we control for changes of meteorology by means of boosted regres-
sion trees, as implemented in the R package deweather (Carslaw, 2021).

3 Model based clustering algorithm

The main steps involved by the model-based clustering algorithm for high-
dimensional data (fun-HDDC) introduced by Schmutz et al., 2020 can be
summarized as follows. Let XXX1, ...,XXXn are the observed multivariate curves,
representing in our case the air quality data. The goal is to group them into
K homogenous clusters, where K is fixed a priori. The core idea is to trans-
form the high-dimensional data into group-specific subspaces. For each group
k (k = 1, . . .K), let dk < R denote the intrinsic dimension of a low dimensional
latent subspace in which the curve of each cluster could be described. Through
a principal component analysis for multivariate functional data, curves are ex-
pressed into a group-specific basis

ϕk
r(t) =

R

∑
l=1

qkrlφl(t),1 ≤ r ≤ R (1)

obtained through a linear transformation from the matrix of principal factors{
φ j

r

}

1≤ j≤p,1≤r≤R
where qkrl are the basis expansion coefficients of the eigen-

functions, contained in an orthogonal matrix R×R . Thus, each multivariate
curve nk, of cluster k, can be represented by its score (δk

i )1≤i≤nk .
The scores are assumed to follow a Gaussian distribution δk

i ∼ N(µk,∆K) with
µk ∈ RR the mean function and ∆K the corresponding covariance matrix. Ac-
tually, the novel approach (fun-HDDC) is an extension of the work of Jacques
& Preda, 2014, and it is advantageous from two perspectives: modeling all
principal component scores with estimated variances that are not zero, and
proposing a criterion for choosing the number of clusters using the expectation-
maximization (EM) algorithm.

4 Results

In this section, we present the results obtained through the use of the algo-
rithm illustrated in Section 3. All the analyses were performed using the R
packages fda and funHDDC (R Core Team, 2022). The observed pollutant
time series and the meteorological normalized pollutant time series have been
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transformed into functional data with a process of smoothing, with 30 basis
and cubic B-spline. In either instances, the model-based clustering algorithm
applied here is the [AkjBQkDk] model (see, Schmutz et al., 2020 for more
details) and provided the partition of monitoring stations into two groups. We
find out that the composition of the identified groups does not change after
performing a meteorological normalization: the first cluster contains the mon-
itoring stations of Chieti and Francavilla whereas the remaining monitoring
sites of Via Firenze, Montesilvano and Teatro d’Annunzio are grouped in the
second cluster. For NO2, PM10 and PM2.5, we observe that cluster 2 exhibits
higher values throughout the period considered than cluster 1; conversely for
benzene an opposite behaviour is recorded.

Interestingly, the functional multivariate clustering algorithm reveals a po-
tential misclassification since the Pescara urban background station of “Teatro
d’Annunzio” is grouped with two traffic stations. This result highlights the
peculiarity of the municipality of the Pescara, characterized by a considerable
population density and a capillary road network, with high volumes of traffic
that insists on an area little extended. In this context, urban traffic emissions
represent the dominant source of atmospheric pollution and make background
stations similar to traffic ones.
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ABSTRACT: Student mobility flows are usually analyzed through gravity models.
However, researchers devote less attention to the potential spatial heterogeneity in
the estimated parameters: indeed local analysis is a crucial task within the Italian ter-
ritory, where, as a consequence of the decentralization process, there are universities
with national or local vocation. Then, in the empirical analysis of our work, we es-
timate the parameters for each university to identify their catchment area: the results
show different interaction behaviors among Italian universities.

KEYWORDS: gravity models, student mobility, higher education, Poisson regression.

1 Introduction

Mobility of students across a country in higher education has gained increasing
attention in the last years, due to the socio-economic impact of such a migra-
tion. Flows between an origin and a destination are usually analyzed through
gravity models, which rely on Newton’s law of universal gravitation: the in-
teractions among two areas are proportional to the product of their ”masses”
(attraction effect) and inversely proportional to their distance (deterrence ef-
fect). Generally, the employed gravity models in literature, in order to explain
the flows between the area of origin and the university of destination, assume
the same relationship for each origin and each destination (see e,g., Sa et al.,
2004, for the Dutch universities, and Bacci & Bertaccini, 2021, for the Italian
ones), then they do not consider possibly different interaction dynamics.

In the present contribution, we consider a destination-specific gravity model
to obtain disaggregated information for each university (Haynes & Fothering-
ham, 1984): allowing model parameters to vary across the space is a crucial
task in heterogeneous countries like the Italian one, where many students com-
ing from the South decide to study in the universities located in the North.
Furthermore, we allow the distance parameter, reflecting the deterrence effect,
to vary among three thresholds: less than 250 kilometers, between 250 and
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500 kilometers, and more than 500 kilometers. The idea is that if we have an
increasing value of the parameter as we move from the lowest classes to the
highest ones, the university has a national vocation rather than local. Further-
more, identifying the catchment area is of interest for university administrators
for their marketing strategies. More in detail, in this work we focus on students
enrolled in Science & Technologies (S&T) courses: they are of particular inter-
est for the policy makers, because they are directly related to the technological
development of the area where the university is located (Dotti et al., 2014).

The data employed for this work comes from the Italian National Student
Registry (in Italian, Anagrafe Nazionale Studenti - ANS), the Italian adminis-
trative database that records the students, by their province of residence, en-
rolled in any degree program in a certain university located in Italy.

The work is structured as follows: Section 2 describes the model we em-
ploy for the empirical analysis, Section 3 analyzes the data and comments the
estimation results, and Section 4 offers some concluding remarks.

2 Theoretical Model

In order to analyze student mobility in higher education we rely on gravity
models, a useful tool to describe people flows over a geographic area. By as-
suming the flow Ti j, denoting the number of students moving from the province
of residence i (i = 1, . . . , I) to the university of destination j ( j = 1, . . . ,J), as
an outcome of a Poisson process, its conditional mean λi j can be expressed as
follows (see, e.g., Flowerdew & Aitkin, 1982):

λi j = exp

(
k+

P

∑
p=1

αp logxip +
Q

∑
q=1

βq logz jq + γ logdi j

)
(1)

where xip and z jq are the explanatory variables measuring origin propulsive-
ness and destination attractiveness, respectively, di j is the road distance, ex-
pressed in kilometers, between each origin and destination (that we expect has
a negative influence on the student flows), k is a constant of proportionality,
while αp, βq and γ are the other parameters to be estimated. In the model
specified above, we assume the same relationship for each origin and each
destination. Then, we can obtain disaggregated information if we estimate the
model for each university (see Haynes & Fotheringham, 1984), thus obtaining
destination-specific parameters.

As opposed to log-normal models, the Poisson regression allows us to deal
with the problem of zero-valued flows, while this is not the case when we have
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to use the log-transformation of the dependent variable. Then, we estimate
the parameters through the Poisson-Quasi-Maximum-Likelihood estimation
(QMLE) technique, in order to obtain consistent estimates of the parameters
even if the assumed distribution is no more valid, except the correct specifica-
tion of the conditional mean, as it could be the case when dealing with a large
amount of zero-valued flows.

3 Empirical Analysis

The data of this work come from the ANS, the Italian administrative database
that records students’ enrollment in Italian universities, by their province of
residence. The analysis focuses on students enrolled in a bachelor or five-
years degree program for the academic year 2011-2012. More specifically, we
consider a subset of students, those attending S&T courses (ISCED 5, 6 and 7)
due to their relevance for local technological development. As proxy for the
origin propulsiveness, we use the total number of students resident in province
i (O Mass), while for the distance, we allow its parameter to vary according
to its belonging to one of the categories defined by the following thresholds:
less than 250 kilometers, between 250 and 500 kilometers, and more than 500
kilometers. Table 1 reports the summary results of the estimated destination-
specific gravity model: as we can see, there is a lot of variation in the value of
the coefficients among the universities, thus supporting the hypothesis of spa-
tial heterogeneity. For lake of space, we do not report the estimates for each
destination, but we find that the universities offering very specialized degree
programs (e.g., Polytechnic universities of Milan and Turin) show an increas-
ing value of the deterrence effect (national vocation) as opposed to universities
with a decreasing level (local vocation), this is the case for most of the univer-
sities of the South (Bacci & Bertaccini, 2021).

4 Conclusion

This work analyzes S&T student mobility flows in Italian higher education
through a Poisson gravity model. More specifically, we allow the parame-
ters to vary across institutions to detect some heterogeneity in the interaction
behaviors. Empirical analysis supports our hypothesis thus allowing us to dis-
criminate among universities with national vocation as opposed to universities
with local vocation: this is of relevant interest for university administrators in
implementing their orientation strategies aimed at high school students. As
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Table 1. Summary results of the estimated Poisson destination-specific gravity models
for student mobility in higher education.

Coefficients
Min Mean Max 1Q 2Q 3Q

Constant -6.604 3.476 12.591 0.831 3.395 5.749
d < 250 -2.156 -0.688 -0.261 -0.788 -0.656 -0.536
250<d<500 -4.479 -1.394 -0.568 -1.293 -1.123 -0.961
d>500 -3.954 -1.395 -0.417 -1.402 -1.04 -0.789
O Mass -0.863 0.347 1.833 0.071 0.324 0.635
Pseudo-R2 0.843 0.505 0.981 0.795 0.864 0.933

future research, it could be interesting to obtain deeper information by allow-
ing the parameters to vary according to the origin through the Geographically
Weighting Regression (GWR) technique (Fotheringham et al., 1998).
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ABSTRACT: The contribution illustrates how selection of model-based trees can be
supplemented by local diagnostics on a necessary condition for the correct specifi-
cation of the baseline model, based on surrogate residuals’ analysis. The procedure
can support the choice of the baseline model or the tuning of pre-pruning conditions.
Examples are given for MOB trees based on ordinal logit models.
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1 Motivating framework

The contribution discusses the advantages of performing residuals diagnostics
for ordinal data models (Liu & Zhang, 2018) in the setting of model-based
classification trees. Specifically, a necessary condition for a model to be cor-
rectly specified is that surrogate residuals are uniformly distributed. The paper
shows the procedure for model-based trees (Zeileis et al., 2008) with ordinal
logit models to tune pre-pruning conditions, to identify the nodes that should
be preferably pruned, or to select the best tree in terms of the maintained lo-
cal model. For illustration, we consider data from the 5th European Working
Condition Survey carried out in 2010 and focus on N = 972 responses for Italy
to the question ‘Do you experience stress in your work?’ on a m = 5 wording-
type scale: ‘Always’, ‘Most of the time’, ‘Sometimes’, ‘Rarely’, ‘Never’ *.†

*Coded from 1 to 5 for convenience
†To avoid bias in favour of variables with many splits, we consider as covariates dichoto-

mous factors Gender (G) experience of Insomnia (I), experience of Fatigue (F), experience of
Depression (D), presence of Risk (R) connected to the job stability, being the Household Bread-
winner (B). The only non dichotomous covariate is the size of the Household (H) as number of
components.
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Figure 1. MOB for M : Stress ∼ Gender (Top); Residuals’ diagnostics for MOB based
on M on perceived work-related stress (bottom)

2 Residuals diagnostics of MOB trees for ordered responses

In the setting of MOB trees ‡, consider an ordered logit model
M : logit(Pr(Ri ≤ j|xi)) = α j −β1xi, j = 1, . . . ,m as local maintained model.
For instance, let M : Stress ∼ Gender (see the top panel in Figure 1). Then,
Figure 1 (bottom) displays the uniform QQ plot of residuals at inner nodes and
descendants, showing that the split at node 5 should be preferably pruned as M
does not meet locally the necessary condition for being correctly specified.

Then, consider model M : Stress ∼ Breadwinner and the corresponding
MOB with minsplit=50, maxdepth=4 (see Figure 2 - left). Uniform
QQ plots of residuals’ at tree nodes are displayed in Figure 3, showing that
- except for node 3 and its descendants - there is poor evidence for M be-
ing correctly specified locally. Then, modifying the pre-pruning condition on

‡(partykit R package)
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Figure 2. MOB tree for M : Stress ∼ Breadwinner with minsplit = 50 (left) and
minsplit=100 (right)
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Figure 3. QQ plot of surrogate residuals for a MOB tree based on M : Stress ∼
Breadwinner (minsplit=50)

minimum sample size required to attempt a split (minsplit = 100) yields
a reduced MOB tree (see Figure 2 - right), with evidence that the necessary
condition for being correctly specified is overall satisfied (see Figure 4).

3 Concluding remarks

Residuals diagnostics in the setting of model-based trees can be successfully
exploited also for trees based on CUB models (Cappelli et al., 2019) to select
the baseline model or the best performing partitioning criterion. The proposed
procedure can be further integrated within model selection in order to focus
only on models for which the necessary condition for being correctly specified
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Figure 4. Uniform QQ plot for local diagnostics on model M : Stress ∼ Breadwinner
(minsplit=100)

can be maintained. For instance, local uncertainty diagnostics of Binomial
classification trees for rating data has been advanced in Simone, 2023. Further
studies will investigate the impact of residual diagnostics on the derivation of
variable importance measures from model-based tree ensembles.
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ABSTRACT: A method for handling the unique correlation structure that can occur in
longitudinal data is introduced for hidden Markov models. This approach uses a fam-
ily of independent mixture models that apply a variety of constraints to the covariance
matrix, which is then used in hidden Markov models, i.e, dependent mixture models.
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1 Introduction

Longitudinal data is information that is collected on several subjects across
several points in time. Longitudinal studies are often used in clinical or so-
ciological research, but difficulties may arise as the correlation that can occur
between subjects must be accounted for. For certain longitudinal studies, it
would be useful not only to cluster the subjects but to model the transitions
between states. The change in state can be modeled by hidden Markov mod-
els (HMMs). Efforts have been made in regression models, specifically AR
and MA models (Hasan & Sneddon, 2009; Sutradhar, 2003), and in indepen-
dent mixture models (McNicholas & Murphy, 2010) to account for the unique
longitudinal correlation structure. This research modifies the EM algorithm
for HMMs by using the covariance structures from the Cholesky-decomposed
Gaussian mixture model (CDGMM) family (McNicholas & Murphy, 2010).

2 Background

A hidden Markov model comprises of two processes, an unobserved parame-
ter process and an observed state-dependent process. The simplest HMM for
longitudinal data can be defined as

P(Cit |C(it−1)) = P(Cit |Cit−1), for i = 1, ...,n, t = 2,3, ...,T

P(Xit |X(it−1),C(t)) = P(Xit |Cit), for i = 1, ...,n, t = 1, ...,T
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where C(it) represents the history of the unobserved parameter process {Cit :
i = 1, ...,n, t = 1,2, ...,T} with state space C = 1, ...,m, and X(it) represents the
history of the state-dependent process {Xit : i = 1, ...,n, t = 1,2, ...,T}. The
parameter process Cit satisfies the Markov property and is then used in the
distribution of the state-dependent process Xit .

A common method for maximum likelihood estimation of an HMM is the
expectation-maximization (EM) algorithm (Dempster et al., 1977). An EM for
HMMs is called the Baum-Welch algorithm (Baum et al., 1970, 1972; Welch,
2003). Specifically, it is an EM for a hidden Markov model whose Markov
chain is homogeneous. By assuming a homogeneous HMM, the parameter
estimates have closed form solutions. The parameters are derived from the
complete-data log-likelihood given by

l(ϑϑϑ) =
n

∑
i=1

{
m

∑
g=1

ui1g logδi +
T

∑
t=2

m

∑
g=1

m

∑
k=1

vitgk logγgk

+
T

∑
t=1

m

∑
g=1

uitg log f (xit |Sit = g)

}
,

where ϑϑϑ denotes the vector containing the model parameters, δi is the station-
ary distribution, γgk are the transition probabilities, the unknown labels uitg = 1
if the observation i is in state g at time t and uitg = 0 otherwise, and the other
unknown labels vitgk = 1 if the observation i is in state g at time t − 1 and in
state k at time t, and vitgk = 0 otherwise.

For longitudinal data, McNicholas & Murphy (2010) use a Gaussian (in-
dependent) mixture model with a modified Cholesky decomposed covariance
structure (Pourahmadi, 1999, 2000) such that the precision matrix ΣΣΣ can be de-
composed into ΣΣΣ−1 = T′D−1T, where T is a unique unit lower triangular ma-
trix and D is a unique diagonal matrix with strictly positive diagonal entries.
For a p-dimensional random variable X, the multivariate Gaussian mixture
model with the modified-Cholesky decomposition, the gth component density
is given by

f (x|µµµg,(T′
gD−1

g Tg)
−1) =

1√
(2π)p|Dg|

exp
{
−1

2
(x−µµµg)

′T′
gD−1

g Tg(x−µµµg)

}
.

A family of eight Gaussian mixture models are constructed by constraining Tg and/or
Dg with the option to impose the isotropic constraint Dg = δgIg. This family is called
the Cholesky-decomposed Gaussian mixture model (CDGMM) family. The nomen-
clature, covariance structure, and number of free covariance parameters for all models
are displayed in Table 1.
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Table 1. CDGMM Family

Model Tg Dg Dg Free Cov. Parameters
EEA Equal Equal Anisotropic p(p−1)/2+ p
VVA Variable Variable Anisotropic m[p(p−1)/2]+mp
VEA Variable Equal Anisotropic m[p(p−1)/2]+ p
EVA Equal Variable Anisotropic p(p−1)/2+mp
VVI Variable Variable Isotropic m[p(p−1)/2]+m
VEI Variable Equal Isotropic m[p(p−1)/2]+1
EVI Equal Variable Isotropic p(p−1)/2+m
EEI Equal Equal Isotropic p(p−1)/2+1

Constraining Tg such that Tg =T suggests that all states have the same correlation
structure. Constraining Dg such that Dg = D suggests that all states have the same
variability at each time point and the isotropic constraint Dg = δgIp suggests that the
variability at each time point is the same. All models would be fitted using an EM
algorithm and then based on a model selection criterion, one would be selected.

3 Methodology

We propose modifying the M-step in the EM algorithm for a Gaussian HMM by sub-
stituting the ‘traditional’ covariance update, i.e.,

ΣΣΣg =
1
ng

n

∑
i=1

T

∑
t=1

ûitg(xit −µµµg)(xit −µµµg)
′

where ng = ∑n
i=1 ∑T

t=2 ûitg, with a member of the CDGMM family. This modified
algorithm is outlined in Algorithm 1.



642

Algorithm 1 EM Algorithm for Gaussian HMM
1: initialize δδδ and ΓΓΓ
2: initialize uitg and vitgk
3: while convergence criterion is not met do
4: update ûitg, v̂itgk
5: update γgk, δg
6: update µ̂µµg
7: update T̂g, D̂g

8: update Σ̂ΣΣ−1
g = T̂′

gD̂−1
g T̂g

9: check convergence criterion
10: end while
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ABSTRACT: The Cluster-Weighted Model (CWM) is a member of the family of the
Mixtures of Regression Models and it is referred as Mixture of Regression with Ran-
dom Covariates. Currently, the only procedure for estimating these models is R pack-
age flexcwm. The aim of this article is to introduce a new software component, the
Stata package cwmglm which estimates CWMs based on the most common general-
ized linear models. Our software also extends to Stata users the possibility of estimat-
ing parsimonious models of Gaussian distributions with alternative specifications of
the variance matrix. cwmglm also calculates the the generalized coefficients of de-
termination and bootstrap standard errors that are not currently available in flexcwm.
We illustrate the use of cwmglm with real data on Covid-19 admissions.

KEYWORDS: cluster weighted models, clustering, parsimonious models, Stata.

1 Introduction

The Cluster-Weighted Model (CWM) is a member of the family of the Mix-
tures of Regression Models and it is also referred as Mixture of Regression
with Random Covariates. The model has been first proposed under Gaussian
assumptions (Gershenfeld et al., 1999). Assuming random covariates relaxes
the assumption of assignment independence by allowing the component dis-
tribution of the covariates to affect the assignment of the observations to the
mixture components (Mazza et al., 2018). A CWM models parametrically the
joint density p(x,y) of response variable Y and covariates X using the condi-
tional density p(y|x) and the marginal density p(x). In Ingrassia et al. (2012)
the CWM has been formulated in the statistical framework under Gaussian
assumptions and Ingrassia et al. (2015) introduced a broad family of CWMs
modeling discrete responses in which the conditional densities are assumed to
belong to the exponential family and the covariates are of mixed-type. For
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such models, Di Mari et al. (2019) and Ingrassia & Punzo (2020) introduced
local and overall coefficients of determination based on the decomposition of
the deviance.

From the software point of view, Mazza et al. (2018) underlined the scarcity
of packages aimed at estimating CWMs, the same authors developed flexcwm
for R. To our knowledge, no other software is currently available. The aim
of this article is to address such gap by introducing cwmglm, a Stata pack-
age focused on CMWs. Our software component is based on the framework
of Ingrassia et al. (2012) and Ingrassia et al. (2015) and estimates mixtures
of generalized linear models (GLMs) with random covariates. The supported
families are Gaussian, Poisson and binomial. The supported marginalizations
for the covariates are multivariate Gaussian, multinomial, binomial, and Pois-
son. The variance matrix of multivariate Gaussian covariates is parametrized
according to Celeux & Govaert (1995). This feature is introduced in Stata for
the first time with cwmglm. Other than extending the possibility of estimat-
ing CMWs to Stata users, cwmglm introduces new internal validity measures
based on the generalized coefficient of determination and bootstrap-based in-
ference, these features are not available in flexcwm.

2 Cluster Weighted Models

Assume a sample (x1,y1), . . . ,(xn,yn) concerning a response variable Y and
a set of covariates X . Assume that the sample comes from a heterogeneous
population formed by K latent classes. The CWM models the density of (Y,X)
as outlined by Equation 1.

p(x,y,θ) =
K

∑
j=1

π j p(y|x;ζ j)q(x;ψ j) (1)

In Equation 1, π j is the mixing proportion of latent class j, p(y|x;ζ j) is the
class j-specific conditional density of the response variable and q(x;φ j) is the
marginal density of X in class j. Densities are characterized by parameters
ζ j and φ j to be estimated. In our framework, the conditional density belongs
to the exponential family and it is modeled as a GLM, while the marginal
density q(x;ψ j) is modeled according to the Gaussian, Bernoulli, multinomial
and Poisson distributions. Parameters are obtained by maximizing the log-
likelihood corresponding to the density of Equation 1 using the expectation-
maximization (EM) algorithm. Assuming p(y|x;ζ j) = 1 in Equation 1 leads
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to a mixture of distributions, while q(x;ψ j) = 1 leads to a finite mixture of
regressions (FMR).
In Equation 1, assuming multivariate Gaussian covariates implies that q(x;ψ j)=
φ(xxx;µµµ j,ΣΣΣ j) where µµµ j is the mean vector and ΣΣΣ j is the variance matrix for latent
class j (to be estimated). The eigenvalue decomposition of the variance ma-
trix ΣΣΣ j = λ jDDD jAAA jDDD′

j (Celeux & Govaert, 1995) can be used to model cluster
volume, shape and orientation. Combining constraints on λ j (class volume),
DDD j (orientation) and AAA j (shape) define fourteen parsimonious models. Specifi-
cally, clusters may be constrained to have equal or variable volume, spherical,
equal or variable shape and axis-aligned, equal or variable orientation. For
example, possible specifications may be based on the assumption that clusters
have equal volume, equal shape, equal orientation (EEE) or that cluster are
characterized by variable volume, equal shape and variable orientation (VEV).

3 The cwmglm package

The cwmglm module is available in the Statistical Software Components (SSC)
archive, can be installed by using the Stata command ssc install cwmglm and
fits CWMs as mixtures of the most common GLMs with random covariates.
To our knowledge, the features of cwmglm are completely new for Stata users
as CWMs are not estimable with the current availability of Stata commands.
Indeed, gsem and fmm are only capable to estimate FMR and mixtures of
distributions, which are nested in CMWs and estimable using cwmglm. In
cwmglm, the parametrization of the class j-specific variance matrix of multi-
variate Gaussian covariates is based on Celeux & Govaert (1995). Such mod-
els are available in R packages such as mclust (Fraley & Raftery, 2007) and
clustvarsel (Scrucca & Raftery, 2018) but not in Stata. Estimation of models
with variable orientation and equal shape is based on Browne & McNicholas
(2014).
R users can estimate CWMs using flexcwm; our package is related to it by
extending its capability to Stata. Further, cwmglm provides some new pro-
cedures based on novel deviance-based measures of model fit (Di Mari et al.,
2019) and bootstrap standard errors.
Moreover, besides controlling the number of EM iterations, cwmglm users
can control the number of iterations of the maximization procedures occur-
ring during each EM iteration. This option is useful when, during a single
maximization step, models requiring iterative estimation such as GLMs fail to
converge. Such feature is not available in flexcwm.
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4 Empirical example

The dataset includes a random sample of 1000 hospital admissions during the
first Covid-19 wave (Feb 2020 - May 2020) in the hospital of Brescia, Italy.
The response variable is the length of stay in days. The covariates are the
day of admission, the patient’s demographic characteristics, procedures and
comorbidities. The empirical strategy is concerned in estimating CWMs for
different numbers of mixture components and compare their fit.
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ABSTRACT: We present two families of matrix-variate hidden Markov regression
models, which differ in how they handle covariates (i.e., as fixed or random). The
models achieve parsimony by using the eigen-decomposition of the components’ co-
variance matrices. A two-step fitting strategy is implemented due to the high number
of parsimonious models. These models are then investigated on a real dataset.
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1 Introduction

Hidden Markov models (HMMs) are widely used for analyzing longitudinal
data due to their mathematical flexibility. HMMs can also be modified to in-
corporate covariates, resulting in hidden Markov regression models (HMRMs),
which are useful in regression settings (Bartolucci et al, 2012).

Broadly speaking, HMRMs can be divided into two main groups based on
whether the covariates contribute to assigning observations to hidden states.
The first group involves observed covariates that act as fixed effects shared
by all units in the same hidden state, resulting in hidden Markov regression
models with fixed covariates (HMRMFCs). Examples of this category can be
found in studies by Bartolucci and Farcomeni (2015), and Maruotti and Punzo
(2017). The second group, on the other hand, treats observed covariates as ran-
dom and includes information about their distribution in the model to facilitate
clustering. This approach leads to hidden Markov models with random covari-
ates (HMRMRCs) as demonstrated in studies by Punzo et al (2018, 2021).

The focus of our study is to present and examine HMRMFCs and HMRM-
RCs as potential tools for analyzing matrix-variate longitudinal data. These
models will be referred to as MV-HMRMFCs and MV-HMRMRCs, respec-
tively. This type of data is typically obtained by observing P×R matrices of
variables for I units over T periods. In essence, the data can be organized into
a four-dimensional array with dimensions of P×R× I ×T .



649

To achieve parsimony, the two covariance matrices of each hidden state
are subjected to eigen-decomposition. Because of the different formulations,
the overall number of models is different between the two families. In the
case of MV-HMRMFCs, only the covariance matrices of the response vari-
ables are available for each state, producing 98 MV-MRMFCs. On the other
hand, for MV-HMRMRCs, both the response and covariate covariance matri-
ces are available in each state, leading to 9604 MV-HMRMRCs. Therefore, a
convenient approach for fitting the MV-HMRMRCs is employed to reduce the
required computational effort.

We examine a dataset obtained from the Italian National Institute of Statis-
tics to explore the relationship between unemployment and labor force partici-
pation in the Italian labor market. The data is structured in a two-factor design
based on gender and age groups, and it covers four years at the provincial level.

2 Methodology

Let {Yit ; i = 1, . . . , I, t = 1, . . . ,T} be a sequence of response variables, where
each Yit is a matrix of dimension P×R referring to the ith observation for
the tth time point. The main assumption of an MV-HMM is that the ran-
dom matrices in the above sequence are conditionally independent given a
hidden process {Sit ; i = 1, . . . , I, t = 1, . . . ,T} that follows a first-order Markov
chain with state-space {1, . . . ,k, . . . ,K}. This process is governed by the ini-
tial probabilities πik =Pr(Si1 = k), k = 1, . . . ,K, and the transition probabilities
πik| j =Pr(Sit = k|Sit−1 = j) , t = 2, . . . ,T and j,k = 1, . . . ,K, where j refers to
the state previously visited. We assume a matrix-variate normal distribution
for the observations at every time occasion, that is, f (Yit = Yit |Sit = sit) ∼
MV NP×R(Mk,ΣΣΣk,ΨΨΨk), where Mk is the P×R mean matrix, and ΣΣΣk and ΨΨΨk are
the P×P and R×R covariance matrices related to the P rows and R columns,
respectively, for latent state k.

In numerous longitudinal studies, apart from the series of responses, there
exists a series of covariates {Xit ; i = 1, . . . , I, t = 1, . . . ,T}, being each Xit a
matrix of dimension Q×R, that we would like to functionally relate to the
former. Thus, we have to extend MV-HMMs to the two regression-based cate-
gories introduced in Section 1. By starting with the fixed covariates approach
(MV-HMRMFCs), in each latent state k, we are interested in modeling the
conditional distribution

f (Yit = Yit |Xit = Xit ,Sit = k) , (1)



650

by assuming a linear functional form for its expectation

E(Yit = Yit |Xit = Xit ,Sit = k;Bk) = BkX∗
it , (2)

where Bk is a P× (1+Q) matrix of regression coefficients and X∗
it is a (1+

Q)×R matrix having a vector of ones in the first row (to incorporate the inter-
cept in the model) and the Q covariates from the second row onwards.

When the random covariates approach (MV-HMRMRCs) is considered, in
each latent state k, we model the joint distribution

f (Yit = Yit ,Xit = Xit |Sit = k) =
f (Yit = Yit |Xit = Xit ,Sit = k) f (Xit = Xit |Sit = k) , (3)

by also assuming (2).
To introduce parsimony in (1) and (3), we apply the eigen-decomposition

to the covariance matrices, as commonly done in the model-based cluster-
ing literature (see, e.g. Tomarchio et al, 2022). This creates two families
of models: 98 parsimonious MV-HMRMFCs and 9604 parsimonious MV-
HMRMRCs.

Parameter estimation is implemented via a maximum likelihood approach
based on the expectation conditional-maximization (ECM) algorithm (Meng
and Rubin, 1993) and recursions widely used in the HMM literature (Baum
et al, 1970). To make computationally affordable the fitting of 9604 parsimo-
nious MV-HMRMRCs, a two-step fitting strategy (not discussed here for the
sake of space) is implemented.

From a classification perspective, by using a maximum a posteriori prob-
abilities approach (Punzo et al, 2021), each unit is classified to one of the K
hidden states, at each time point. This information can be useful to track how
the observations move between the hidden states as well as to identify which
state is mainly sojourned by each observation.

3 Real data example

We examine the relationship between unemployment and the Labor Force Par-
ticipation (LFP) of 106 Italian provinces, utilizing data from the Italian Na-
tional Institute of Statistics (ISTAT). Our analysis focuses on the four years
from 2018 to 2021. The unemployment and LFP for each province are recorded
in a two-factor percentage format, categorized by gender (male and female)
and age (15-24, 25-34, 35-49, 50-74). Therefore, both variables are presented
in a four-way array format, with dimensions of 2×4×106×4.
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By limiting here our discussion to the results obtained after the fitting of
parsimonious MV-HMRMRCs, we found that the best solution according to
the Bayesian information criterion (BIC) has K = 5 hidden states. The esti-
mated regression coefficients (omitted here due to space constraints) indicate a
negative sign in 80% of the cases. This suggests that the so-called discouraged
worker effect is widespread across the provinces of Italy. The estimated mean
matrices (omitted here due to space constraints) illustrate that the states can be
sorted according to the levels of unemployment, both in gender and age fac-
tors. Specifically, the unemployment levels consistently decrease from the first
state to the fifth state. Looking at the classification obtained by assigning each
state to the province it mainly sojourns, it appears that there is a geographical
pattern. The first two states seem to be predominantly composed of provinces
located in the southern part of Italy, while the other three states appear to con-
tain provinces located in the central and northern parts of the country.
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ABSTRACT: This research investigates university students’ dropout by focusing on
the role of students’ educational backgrounds and labour market conditions of both
origin and destination areas. We exploit the administrative data from the Italian Na-
tional Student Archive related to students enrolled in an Italian university between
2011 and 2018 by applying a two-step approach to separate students’ career disrup-
tion effects related to their high school background, attended university, and degree
program from those associated with labour market and socioeconomic conditions
(e.g., unemployment, income, number of firms). In the first step, the effect of sec-
ondary schools, degree programs, and universities on students’ performance in terms
of earned formative credits is estimated using fixed regression models. In the second
step, the estimated fixed effects are used in a multinomial logit model to account for
the role played by high schools and universities in assessing the effect on students’
career disruption of the labour market conditions of both origin and destination areas.

KEYWORDS: university dropout, multilevel models, university services, labor market
conditions, school effect

1 Introduction and aims

According to the Human Capital Theory the investment in education is strictly
affected by its expected returns (Becker, 1964). However, it is not straightfor-
ward how expectations related to the job market conditions affect the decision
to invest in higher education (Di Pietro, 2006; Contini & Zotti, 2022). Indeed,
these elements affect education decisions in two ways: fewer job opportunities
may encourage students to have better credentials to spend in the labour mar-
ket, while family income losses may push students to enter the labour market
and abandon the university (Duncan, 1965; Rees & Mocan, 1997). Indeed, ac-
cording to the main literature, better labour market conditions may increase the
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cost of investment in education, determining higher dropout rates for students
who experience difficulties in their university careers, come from disadvan-
taged backgrounds, or are enrolled at the university to avoid unemployment.
However, better labour market conditions can provide more resources to sup-
port families’ education investment and increase its expected returns. Indeed,
several studies related to the Italian framework highlight a negative relation-
ship between worse job market conditions and students’ dropout (Di Pietro,
2006; ?; Contini & Zotti, 2022; Contini & Cugnata, 2018; Meggiolaro et al.,
2017; Tedesco, 2022; Perchinunno et al., 2021). However, Contini & Zotti,
2022 show that a general trend does not emerge if differences across disci-
plinary areas are considered.

This paper investigates the effects of labour market conditions, students’
high school past experiences and universities’ environment on students’ dropout
risk between the first and the second year of their university career. We com-
bine administrative data on students’ university careers in Italy with several
complementary data sources regarding the socioeconomic conditions of both
students’ areas of residence and universities’ hosting areas. This data is ex-
ploited using a two-step approach to disentangle the effect of students’ educa-
tional background and individual characteristics from the one related to local
labour market conditions. The paper is organised as follows: Section 2 de-
scribe the database used and the methods applied in the research; Section 3
discusses the preliminary results and concludes.

2 Data and methods

This research is based on the data from the MOBYSU.IT database regarding
the careers of all students enrolled in an Italian university between 2011 and
2018.* MOBYSU.IT includes information on several students’ characteris-
tics such as their sex, high school background, municipality of residence, age,
and the chosen university and degree programs. We have collected data on
1,668,882 first-year students.

MOBYSU.IT also contains the data on the formative credits (CFU) earned
by each student within her/his first year of career.† This information helps

*Data drawn from the Italian ‘Anagrafe Nazionale della Formazione Superiore’ has been
processed according to the research project ‘From high school to the job market: analysis of
the university careers and the university North-South mobility’ carried out by the University
of Palermo (head of the research program), the Italian ‘Ministero Università e Ricerca’ and
INVALSI

†The CFU are similar to the European Credit Transfer and Accumulation System (ECTS),
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measure the regularity of students’ careers in terms of exams passed during
their first year of career and to define students’ risk of dropout. At this aim, we
classify students into dropouts, at risk of dropout, and regulars. Dropouts are
students who are not enrolled in any university in their second year of career
and, therefore, that have abandoned the Italian university system. Students at
risk of dropout are those that have obtained less than 25 CFU within their first
year of career, while regulars are the residual category. The threshold of 25
CFU is chosen based on the observed values of CFU obtained among regulars
and dropouts. Indeed, 95% of dropouts have obtained less than 25 CFU during
the first year of their career.

The MOBYSU.IT database has been combined with the data obtained from
ISTAT to assess the role of labour market conditions on students’ career dis-
ruption. At this aim, we collected data on the provincial unemployment rate,
total taxable income per capita at the municipal level, and the number of lo-
cal firms or branches of firms in the municipality. These indicators have been
obtained for students’ areas of residence and universities’ hosting areas.

This data is exploited by applying a two-step procedure to disentangle the
effect related to students’ educational backgrounds from the one related to ori-
gin and destination areas’ labour market conditions. The first step consists of
two fixed effects regression models that estimate the CFU obtained by students
as a function of high school fixed effects and universities × degree programs
fixed effects. The second step uses the fixed effects estimates to account for
the average role of high schools and universitie’ degree programs on students’
dropout risk. More specifically, a multinomial logit model is estimated to as-
sess the role of students’ characteristics and labour market conditions on the
probability of dropout, being at risk or being a regular student.

3 Preliminary Results

Preliminary results provide evidence that the inequalities at entrance related
to the high school background and the attended university have a relevant role
in affecting students’ probability to experience an event of career disruption.
Indeed, the average effect of high schools on the CFU obtained by students is
one of the main predictors of the probability to dropout even when account-
ing for students’ and areas’ characteristics. Furthermore, high schools plays a
relevant role also with respect to students’ risk of dropout. However, in this
case, the most important predictor is given by the set of university × degree

and they represent a measure of the workload associated with each exam.
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programs fixed effects that measure the average performances of students in
the institutions in terms of CFU. The results also show that labour market con-
ditions have different effects depending on whether we consider dropouts or
students’ at risk of dropout and that these effects change when looking at ori-
gin or destination areas. Further research will study the effect of labour market
conditions and how it changes depending on students’ socioeconomic condi-
tions. Moreover, the use of ad-hoc survey could provide valuable insight on
the optimal policies to contrast university dropout.
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A CLUSTERING METHOD FOR DISTRIBUTIONAL DATA
BASED ON A LDQ TRANSFORMATION

Rosanna Verde 1, Gianmarco Borrata 2 and Antonio Balzanella 1

ABSTRACT: This work deals with a clustering method for distributional data. The
set of objects to be clustered are described by p distributional variables. Each object
is represented by p density probability functions (dpf ’s), or empirical ones. In con-
sideration of the most recent developments in distributional data analysis (DDA), we
introduce a transformation of the quantile functions, qf ’s, associated to the dpf ’s, in
Logarithm Derivative Quantiles (LDQ) functions, which allows to map density prob-
ability functions in an Hilbert space. Our proposal is based on a Dynamic Clustering
Clustering type-algorithm, where the centroid of the clusters are represented by linear
combination of LDQ functions; the objects are assigned to the clusters according to
minimum sum of the squared distance from the centroid function. Applications on
synthetic and real data have corroborated the new method.

KEYWORDS: symbolic data analysis, distributional data, quantile density functions
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Shrinkage of time-varying effects in panel data
models
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Abstract: We consider regression models for panel data with time-varying
effects in a Bayesian framework. We implement shrinkage of regression effects
and the process variances of the effects to distinguish between effects that are
practically zero, constant or time-varying via shrinkage priors. Longitudinal
dependence is taken into account by including a subject specific random factor
with weights that may also vary over time. The model is applied to analyse
panel data on annual incomes of mothers returning to the job market after
maternity leave.
Keywords: dynamic effects; factor model; shrinkage prior

1 Introduction

Panel data where subjects are observed at several time points provide
richer information than cross sectional data but pose additional chal-
lenges as correlation of observations within subjects has to be taken
into account. The multiple measurements per subject allow to model
their heterogeneity and the longitudinal structure provides information
on development over time. A standard way to take into account hetero-
geneity in panel data regression analysis is by including subject specific
random effects in the linear predictor and development over time can
be modelled by allowing for time-varying regression effects. However,
modelling all regression effects as time-varying will result in an over-
specified model if actually one or more effects are time-constant or even
0. In a Bayesian approach, based on an adaquate model formulation,
appropriate prior distributions allow to identify constant or zero effects
in time series regression models (Frühwirth-Schnatter & Wagner, 2010).
In this paper we will use the shrinkage priors recently proposed in Bitto
& Frühwirth-Schnatter, 2019 for time series and investigate their per-
formance for panel data where the number of subjects is larger than 1
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but time series are short, e.g. in our application we have individual time
series of length 8.

2 Model specification and inference

2.1 Regression model with time-varying effects
To keep notation simple, we assume balanced panel data where i = 1, ...,n
subjects are observed at time points t = 1, ...,T . Let yit denote the
response of subject i at time t and xit is the p × 1 vector of covariates.
We consider the following regression specification

yit = xT
itβt + ϵit, ϵit ∼ N (0,Ω) (1)

where βt is the p × 1 vector of regression effects at time t and Ω is a
T ×T covariance matrix.

To model time-varying parameters we assume that the regression
effects follow a random walk

βt = βt−1 +ωt, ωt ∼ N (0,Q)

with independent increments, Q = diag(θ2
1, . . . ,θ2

p), and starting values

β0 ∼ N (0,Q0).

The process variance θ2
j , j = 1, . . . ,p carries information on the evolve-

ment of the regression effect βjt over time.
To allow shrinkage to time-constant or zero effects we use shrinkage

priors on the effects and process standard deviations in the non-centered
parameterization (Frühwirth-Schnatter & Wagner, 2010), which is given
as

βt = β +θβ̃t.

Here θ = diag(θ1, . . . ,θp) is the vector of process standard deviations and
β̃t is defined as

β̃t = β̃t−1 + ω̃t, ω̃t ∼ N (0,I).
Hence, the regression model (1) in its non-centered parameterization is
given as

yit = xT
itβ +xT

itθβ̃t + ϵit.

Shrinkage of elements of β as well as θ is induced by appropriate prior
distributions.
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2.2 Modelling longitudinal association
To allow for longitudinal association within subjects we specify the error
term ϵit in terms of a subject specific latent factor fi and the idiosyn-
cratic error εit as

ϵit = λtfi +εit, εit ∼ N (0,σ2
t )

and hence
Ω = λλT +Σ

where Σ = diag(σ2
1, . . . ,σ2

T ). This model encompasses as special case
compound symmetry structure of Ω when λt = λ. To model time-varying
factor loadings we again model the evolvement of the factor loadings by
a random walk

λt = λt−1 +νt, νt ∼ N (0,ψ2).
parameterization.

2.3 Prior Distributions
To encourage shrinkage of constant effects βj and their process variances
θ2

j , j = 1, . . . ,p, following Bitto & Frühwirth-Schnatter, 2019 we specify
the priors on βj as independent Normal-Gamma and on the process vari-
ances θj as independent double Gamma-priors. The same specification
is used for the priors on the factor loading parameters in the noncentered
parameterisation.

For the error variances σ2
t of the idiosyncratic errors we use indepen-

dent uninformative Inverse Gamma priors.

2.4 Inference
Inference is performed by MCMC methods extending the Gibbs sam-
pling proposed in Bitto & Frühwirth-Schnatter, 2019 by the additional
steps to sample the subject specific factors and the factor loadings in
the non-centered parameterization.

3 Application

We apply the developed methods to analyse earnings of mothers in Aus-
tria after their return to the labor market after their last maternity
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leave. The data set comprises earnings for n = 8877 mothers after re-
turn to labour market observed for T = 8 panel periods.

Covariates in the regression model are categorical predictors of the
number of children (baseline: 1 child, dummy for 2 children, dummy for
3 or more children), binary variables for type of contract (baseline: white
collar), leave duration and working experience (for both the baseline is
below the median) as well as the log-earnings before the maternity leave.
All regression parameters, except the effect of 3 or more children and
also the factor loadings vary over time. Figure 1 compares the estimated
time-varying intercept and the effects of 3 or more children under the
shrinkage priors to the estimated effects in a random intercept model
with unstructured time-varying effects. The shrinkage prior results in
smoother effects which can also be effectively reduced to zero, see the
lower panel of Figure 1.

Figure 1. Results for intercept and effect of 3 or more children. Left: Posterior
mean estimates and 95%-HPD intervals of the regression effects. Dotted lines
are the estimated time-varying regression effects from a random intercept model
without smoothing. Right: Posterior of the process standard deviations.
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A BAYESIAN SPATIO-TEMPORAL REGRESSION
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ABSTRACT: For an accurate evaluation of the harmful impacts of pollution on hu-
man health, confounding variables must always be taken into account. Unfortunately,
it oftentimes happens that some confounders might result unmeasured, hence, within
a regression framework, the parameter that represents the exposure’s effect might no
longer be recoverable. In this paper, the unmeasured confounder is represented by
a linear combination of basis functions, a technique that has been used in the spa-
tial confounding literature, and that we expand to spatio-temporal designs. To reduce
dimensionality and confounding bias, spike-and-slab priors are assumed on basis co-
efficients.

KEYWORDS: confounding, spatio-temporal, pollution, health, Bayesian.

1 Introduction

The principal objective in environmental epidemiology is to evaluate whether
exposure to a pollutant has adverse health consequences. To this end, the re-
lationship between exposure and outcome variables can be expressed in re-
gression terms. An accurate evaluation of the relationship of interest requires
that all variables correlated with both exposure and outcome (known as con-
founders), such as meteorological variables, should be included in the model
as additional regressors (Dominici & Peng, 2008). However, data about some
confounders could result not available because of, for example, budget con-
straints. If the model fails to account for confounding, it would be impossible
to recover the parameter of interest. The estimator for the exposure’s effect
would then become biased, and its bias is known as confounding bias in the
epidemiological literature (Dominici & Peng, 2008).

While smooth functions of calendar time are usually included in models for
time-series data (e.g., see Dominici & Peng, 2008), in purely spatial settings,
the simplest and more appealing remedy to the spatial confounding problem
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is to add into the model a spatial random effect. However, Reich et al., 2006
show that doing so distorts inference on the effect of interest and leads the prac-
titioner to draw incorrect conclusions. Different other solutions are reviewed
by Reich et al., 2021 and Urdangarin et al., 2022. To our knowledge, relatively
few authors consider confounding adjustment in spatio-temporal designs. Re-
ich et al., 2021 reviews spatio-temporal methods as well to account for un-
measured confounding under causal inference hypotheses. More recently, two
approaches in the spatial confounding literature are extended to account for
temporal dependence as well (Adin et al., 2023; Prates et al., 2022). In the
next Section, we discuss a different approach wherein, extending the work by
Valentini et al., 2022, unmeasured confounding is accounted for by including
spatio-temporal basis functions into the regression model. We also impose a
prior structure on the basis coefficients that encourages sparsity.

2 The Proposed Model

Consider a spatio-temporal process {Y (s, t) : s ∈ D, t = 1,2, . . . ,T}, defined
for every location, s, over a continuous spatial domain D ⊆ R2, and for dis-
crete time periods t = 1,2, . . . ,T . Assume that it represents a health outcome
observed at a finite set of locations, {s1, . . . ,sN}, for the entire study period.
Moreover, suppose that X(s, t) and Z(s, t) are two correlated Gaussian spatio-
temporal processes representing the exposure (observed at the same spatial
locations and time instants as the outcome) and the unmeasured confounder,
respectively. Assuming that the distribution F is a member of the exponen-
tial family, and that realizations are conditionally independent, it is possible to
specify the following hierarchy, for i = 1, . . . ,N and t = 1, . . . ,T :

Y (si, t)
ind∼ F(µ(si, t),φ) (1)

g(µ(si, t)) = β0 +βxX(si, t)+Z(si, t)+ ε(si, t) , (2)

where µ(si, t) = E[Y (si, t)], φ is a scale parameter, g(·) is an opportune link
function, and ε(si, t) represents a zero-mean stationary Gaussian process with
realizations mutually independent in time but correlated in space such that the
spatial covariance structure is defined by a parametric function with parameter
vector θθθ, that is Cov(ε(si, t),ε(s j, t)) = C(|si − s j|;θθθ) for i, j = 1, . . . ,N. The
primary aim of the analysis is to correctly recover the regression coefficient of
the exposure, βx, while controlling for confounding at the same time.
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Figure 1. Boxplots representing the estimated exposure effect in the simulation study.
The red line represents the real value, βx = 2.

Thanks to the Karhunen-Loéve theorem (KLT, Banerjee et al., 2014), the
process Z(s, t) can be represented as an infinite linear combination of pairwise
orthogonal basis functions, but, operationally, a reduced-rank representation is
given to it:

Z(s, t)≈
M

∑
m=1

αmψm(s, t) , (3)

where ψm(·, ·) are spatio-temporal basis functions, and αm are expansion coef-
ficients, for m = 1, . . . ,M. These bases are then introduced in Equation (2) in
place of the unmeasured confounder. A necessary condition is that they must
be correlated to both X(si, t) and Z(si, t), so the aforementioned drawbacks
discussed by Reich et al., 2006 could be overcome.

To select the most promising bases and hence obtain a parsimonious model,
we assume spike-and-slab priors (Ishwaran & Rao, 2005) on the expansion co-
efficients. The Bayesian hierarchical specification is completed by assigning
prior distributions to all the other parameters, and a Markov chain Monte Carlo
(MCMC) algorithm is constructed for inferential purposes. To show whether
our model is able to mitigate confounding issues, we set up a simulation study
wherein X(s, t) and Z(s, t) are drawn from their joint distribution, under the
assumptions that Cor(X(s, t),Z(s, t)) = 0.5, and that the second process varies
at spatial and temporal scales coarser than those of the first process. The out-
come is then generated using Eqs. 1–2, where F is the Gaussian distribution.
We then fit a non-spatial (NS) model that does not account for confounding,
and our proposal (denoted as SpSl). Figure 1 synthesize the main results: for
each model, it depicts a boxplot of the posterior means for βx obtained from fit-
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ting 100 replicates. The red line represents its true value, βx = 2. The proposed
model can potentially reduce the confounding bias so it should be preferred to
the non-spatial one.

Finally, a more extensive simulation study and real-data applications will
be discussed in an extended version of this paper, wherein several types of
basis functions will be examined as well.

References
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ABSTRACT: Forecasting electricity consumption is a relevant task to ensure that the
supply of energy fed into the grid always equals the demand. In this study we compare
the performance of random forest and linear random forest in the prediction of daily
electricity consumption in Italy. We show that both implementations reach a good
performance in this task, with the best results obtained by linear random forest in a
model including different features such as lags, difference variables and day - month
variables.

KEYWORDS: linear random forest, time series, energy consumption

1 Introduction

Due to the rapid increase in world population and the global economic growth,
the energy consumption is expected to increase in most countries. In particu-
lar, electricity is one of the main energy sources for homes, offices, factories
and many other public and private places. A relevant problem is to ensure that
the supply of energy fed into the grid always equals the demand or, in other
words, to guarantee the equilibrium between the production of electricity and
the consumption. For this reason, different companies and researchers have de-
veloped methods to forecast electricity daily consumption (Zhang et al., 2021).
In this study we assessed the performance of two different implementations of
random forest in the prediction of energy consumption in Italy and compared
their results with the effective consumption and with the prediction of Terna
(the company that manages the Italian national transmission system).

The rest of the paper is organized as follows: first, we give an overview of
the problem, the data collection and the methodology in Section 2. Then, we
present the results in Section 3, and a brief summary and the future develop-
ments in Section 4.
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2 Methods

In this section we will describe how data were collected, the features engi-
neering process, and how these features were used to build the model used for
predictions.

2.1 Data collection

The data related to the forecasts made by Terna’s model, together with the
actual consumption detected by the company (in Megawatt, MW), are pub-
lished daily in the form of PDF files (Terna S.p.A., 2023). The files were
downloaded and read in R (R Core Team, 2023). The data set included day-
by-day hourly consumption values and forecasts for all days ranging from Au-
gust 1, 2022 to March 31, 2023. Subsequently, these values were aggregated
as follows: we computed υi = {v1,v2, ...,v j} with j = 1, ...,24, and a vector
V = {υ1,υ2, ...,υi} with i = 1, ...,243 in order to obtain a vector with daily
values obtained as the sum of individual hourly values.

2.2 Random forest

Random forest is a popular machine learning technique based on the com-
bined use of decision trees, bootstrap, and ensemble methods (Breiman, 2001).
It incorporates the output of several decision trees to produce a single evalu-
ation. In this study we used the classical random forest implementation as
well as a recently developed linear random forest variation based on the im-
plementation of a ridge regression in the leaves (Künzel et al., 2022). In this
variation the returned value is computed using a linear aggregation function:
µ̂(xnew) := xt

new(Xt
SXS+λI)−1Xt

SYS, where Xnew is a new observation, S is a leaf,
Y is the response variable, X the design matrix for the training set, and λ is a
regularization parameter. The optimal splitting point is defined with a greedy
strategy and the stopping criteria is based on an R2 improvement threshold
(Künzel et al., 2022).

2.3 Feature engineering

We created lagged and difference variables to be used as predictors for the
random forest. We therefore defined k as the number of lags that can be
created starting from the response variable, the daily consumption of elec-
tricity. Difference variables were also created as in the following equation:
yi−yi−t where yi is the energy consumpion during the day i. During the model
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evaluation phase, various configurations were tested, using a number of lags
k ∈ {k1, ...,km} with m = 30 and t equals to 7 and to 14. In addition, two vari-
ables relative to the day of the week (Monday-Sunday) and the month (from
August 2022 to March 2023) have been included.

2.4 Models evaluation

The daily consumption values up to the end of February were used as the
training set to predict daily consumption in March (test set). The predictions
have been evaluated using two widely used metrics: root-mean-square error
(RMSE) and mean absolute percentage error (MAPE). Terna’s prediction has
also been included as a benchmark to further compare the magnitude of the
errors. Errors are computed using a moving window scheme.

3 Results

In this section we will present the results obtained using the two different im-
plementations of random forest and compare these results with the effective
consumption and with Terna’s prediction. Figure 1 shows a comparison of
the RMSE for both implementations of random forest compared with Terna’s
prediction. While both implementations of random forest showed a good per-
formance in the prediction of the daily consumption of energy, Terna’s model
showed a lower error (RMSE: 8,796; MAPE: 1.05%). Linear random forest
and classical random forest obtained an RMSE ranging from 11,853 to 16,886,
and from 12,355 to 16,548, respectively, based on the different models we
tested. As shown in Table 1, the best results were obtained by linear random
forest in the configuration including 15 lags and the two difference variables.
This configuration proved to be the best also for the classical implementation
of random forest.

4 Conclusions

To conclude, we showed that random forest can provide accurate predictions
even when used with time series. The two implementations of random forest
used to forecast the energy consumption provides similar results and this might
be due to, among other things, the specific properties of the time series used
for the evaluation. As a future development we plan to further investigate the
role of lags, differentiation and size of the training set.
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Figure 1. Error of LRF (blue), RF (red) and Terna (grey) in the prediction of the
electricity consumption. Abbreviations: LRF, linear random forest; RF, random forest

Table 1. Error of LRF and RF in the prediction of the electricity consumption

Lags Differences RMSE LRF RMSE RF MAPE LRF MAPE RF
5 - 14,740 14,400 1.78% 1.71%

15 - 15,241 15,643 1.80% 1.84%
30 - 16,886 16,548 1.99% 1.97%

5 2 15,585 13,076 1.88% 1.57%
15 2 11,853 12,355 1.42% 1.48%
30 2 12,763 13,236 1.54% 1.59%

In bold the best result (smallest error) for both models. Abbreviations: LRF, linear
random forest; RF, random forest; RMSE, root-mean-square error; MAPE, mean
absolute percentage error
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